高一生物上册知识点总结特别全Word版

上传人:仙*** 文档编号:64924293 上传时间:2022-03-22 格式:DOC 页数:26 大小:572.50KB
返回 下载 相关 举报
高一生物上册知识点总结特别全Word版_第1页
第1页 / 共26页
高一生物上册知识点总结特别全Word版_第2页
第2页 / 共26页
高一生物上册知识点总结特别全Word版_第3页
第3页 / 共26页
点击查看更多>>
资源描述
传播优秀Word版文档 ,希望对您有帮助,可双击去除!生物必修(1)知识点整理第一章 走近细胞第一节 从生物圈到细胞一、相关概念、 细 胞:是生物体结构和功能的基本单位。除了病毒以外,所有生物都是由细胞构成的。细胞是地球上最基本的生命系统 生命系统的结构层次: 细胞组织器官系统(植物没有系统)个体种群群落生态系统生物圈二、病毒的相关知识: 1、病毒(Virus)是一类没有细胞结构的生物体。主要特征:、个体微小,一般在1030nm之间,大多数必须用电子显微镜才能看见;、仅具有一种类型的核酸,DNA或RNA,没有含两种核酸的病毒;、专营细胞内寄生生活;、结构简单,一般由核酸(DNA或RNA)和蛋白质外壳所构成。 2、根据寄生的宿主不同,病毒可分为动物病毒、植物病毒和细菌病毒(即噬菌体)三大类。根据病毒所含核酸种类的不同分为DNA病毒和RNA病毒。 3、常见的病毒有:人类流感病毒(引起流行性感冒)、SARS病毒、人类免疫缺陷病毒(HIV)引起艾滋病(AIDS)、禽流感病毒、乙肝病毒、人类天花病毒、狂犬病毒、烟草花叶病毒等。三、高倍镜1、镜的使用步骤(尤其要注意第1和第4步) 在低倍镜下找到物象,将物象移至(视野中央), 转动(转换器),换上高倍镜。 调节(光圈)和(反光镜),使视野亮度适宜。 调节(细准焦螺旋),使物象清晰。2、显微镜使用常识1) 调亮视野的两种方法(放大光圈)、(使用凹面镜)。反则用小光圈或凸面镜。2) 高倍镜:物象(大),视野(暗),看到细胞数目(少)。低倍镜:物象(小),视野(亮),看到的细胞数目(多)。3) 物镜:(有)螺纹,镜筒越(长),放大倍数越大。4) 目镜:(无)螺纹,镜筒越(短),放大倍数越大。5) 放大倍数=物镜的放大倍数目镜的放大倍数6) 一行细胞的数目变化可根据视野范围与放大倍数成反比 放大倍数越大视野范围越小视野越暗视野中细胞数目越少每个细胞越大 放大倍数越小视野范围越大视野越亮视野中细胞数目越多每个细胞越小3、计算方法:个数放大倍数的比例倒数=最后看到的细胞数如:在目镜10物镜10的视野中有一行细胞,数目是20个,在目镜不换物镜换成40,那么在视野中能看见多少个细胞? 201/4=54、注意事项1 调节粗准焦螺旋使镜筒下降时,侧面观察物镜与装片的距离;2 首先用低倍镜观察,找到要放大观察的物像,将物像移到视野中央(粗准焦螺旋不动),然后换上高倍 物镜;3 换上高倍物镜后,“不准动粗”。物像移动的方向与装片移动的方向相反。第二节 细胞的多样性和统一性一、细胞种类:根据细胞内有无以核膜为界限的细胞核,把细胞分为原核细胞和真核细胞二、原核细胞和真核细胞的比较: 1、原核细胞:细胞较小,无核膜、无核仁,没有成形的细胞核;遗传物质(一个环状DNA分子)集中的区域称为拟核;没有染色体,DNA 不与蛋白质结合,;细胞器只有核糖体;有细胞壁,成分与真核细胞不同。 2、真核细胞:细胞较大,有核膜、有核仁、有真正的细胞核;有一定数目的染色体(DNA与蛋白质结合而成);一般有多种细胞器。3、原核生物:由原核细胞构成的生物。如:蓝藻、细菌(如硝化细菌、乳酸菌、大肠杆菌、肺炎双球菌)、放线菌、支原体等都属于原核生物。4、真核生物:由真核细胞构成的生物。如动物(草履虫、变形虫)、植物、真菌(酵母菌、霉菌、粘菌)等。三、细胞学说的建立: 1、1665 英国人虎克(Robert Hooke)用自己设计与制造的显微镜(放大倍数为40-140倍)观察了软木的薄片,第一次描述了植物细胞的构造,并首次用拉丁文cella(小室)这个词来对细胞命名。 2、1680 荷兰人列文虎克(A. van Leeuwenhoek),首次观察到活细胞,观察过原生动物、人类精子、鲑鱼的红细胞、牙垢中的细菌等。3、19世纪30年代德国人施莱登(Matthias Jacob Schleiden) 、施旺(Theodar Schwann)提出:一切植物、动物都是由细胞组成的,细胞是一切动植物的基本单位。这一学说即“细胞学说(Cell Theory)”,它揭示了生物体结构的统一性。第二章 组成细胞的分子第一节 细胞中的元素和化合物一、1、生物界与非生物界具有统一性:组成细胞的化学元素在非生物界都可以找到 2、生物界与非生物界存在差异性:组成生物体的化学元素在细胞内的含量与在非生物界中的含量明显不同二、组成生物体的化学元素有20多种: 大量元素:C、 O、H、N、S、P、Ca、Mg、K等; 微量元素:Fe、Mn、B、Zn、Cu、Mo; 基本元素:C;主要元素;C、 O、H、N、S、P;细胞含量最多4种元素:C、 O、H、N; 大量元素:指含量占生物总重量的万分之一以上的元素。 微量元素:指生物体生活所必须的,含量虽少但却是维持正常生命活动所必不可少 的如Mn Zn Cu B Mo等。 矿质元素:指出了C H O 以外,主要由根系从土壤中吸收的元素。 Fe 属于半微量元素,是血红蛋白的主要成分,和氧气的运输有重要关系。植物缺铁,叶绿素形成受阻,影响光合作用。 K在动物细胞中多分布在细胞质中,对维持细胞的渗透压、神经的兴奋传导和肌肉收缩有重要作用。在植物体内以离子形式存在,与光合作用过程中糖类的运输有关。 Ca动物血液和组织液中的钙离子对血液的凝固和肌肉的收缩有调节作用。缺钙易患骨质疏松、骨质软化,儿童易患佝偻病。血钙含量低则发生抽搐,血钙高则导致肌无力。 Mg是叶绿素的组成成分,是一切绿色植物光合作用不可缺少的。三、统一性和多样性1、生物的统一性和多样性(1)统一性 组成生物体的各化学元素种类大体相同。(2) 差异性 组成生物体的各化学元素的含量有很大差异。2、生物界与非生物界的统一性和差异性(1) 统一性: 组成生物体的化学元素在无机环境中都能找到,没有一种是生物体所特有的。(2) 差异性: 组成生物体的化学元素在生物界与非生物界相比含量上大不相同。水无机物无机盐组成细胞蛋白质的化合物脂质 有机物 糖类核酸四、在活细胞中含量最多的化合物是水(85-90);含量最多的有机物是蛋白质(7-10);占细胞鲜重比 例最大的化学元素是O、占细胞干重比例最大的化学元素是C。第二节 生命活动的主要承担者-蛋白质一、相关概念:氨 基 酸:蛋白质的基本组成单位 ,组成蛋白质的氨基酸约有20种。脱水缩合:一个氨基酸分子的氨基(NH2)与另一个氨基酸分子的羧基(COOH)相连接,同时失去一分子水。肽 键:肽链中连接两个氨基酸分子的化学键(NHCO)。二 肽:由两个氨基酸分子缩合而成的化合物,只含有一个肽键。多 肽:由三个或三个以上的氨基酸分子缩合而成的链状结构。肽 链:多肽通常呈链状结构,叫肽链。二、氨基酸分子通式: NH2R C H COOH三、 氨基酸结构的特点:每种氨基酸分子至少含有一个氨基(NH2)和一个羧基(COOH),并且都有一个氨基和一个羧基连接在同一个碳原子上(如:有NH2和COOH但不是连在同一个碳原子上不叫氨基酸);R基的不同导致氨基酸的种类不同。四、蛋白质多样性的原因是:组成蛋白质的氨基酸数目、种类、排列顺序不同,多肽链空间结构千变万化。五、蛋白质的主要功能(生命活动的主要承担者): 构成细胞和生物体的重要物质,如头发和肌肉等; 免疫作用:如抗体,抗原; 调节作用:如胰岛素、生长激素; 运输作用:如红细胞中的血红蛋白。 催化作用:如酶;六、有关计算: 肽键数 = 脱去水分子数 = 氨基酸数目 肽链数 至少含有的羧基(COOH)或氨基数(NH2) = 肽链数a. 由个氨基酸形成的一条肽链围成环状蛋白质时,产生水肽键个;b. 个氨基酸形成一条肽链时,产生水肽键个;c. 个氨基酸形成条肽链时,产生水肽键个;d. 个氨基酸形成条肽链时,每个蛋白质的平均分子量为,那么由此形成的蛋白质e. 的分子量为(); 第三节 遗传信息的携带者-核酸一、核酸的种类:脱氧核糖核酸(DNA)和核糖核酸(RNA)二、核 酸:是细胞内携带遗传信息的物质,对于生物的遗传、变异和蛋白质的合成具有重要作用。三、组成核酸的基本单位是:核苷酸,是由一分子磷酸、一分子五碳糖(DNA为脱氧核糖、RNA为核糖)和一分子含氮碱基组成 ;组成DNA的核苷酸叫做脱氧核苷酸,组成RNA的核苷酸叫做核糖核苷酸。四、DNA所含碱基有:腺嘌呤(A)、鸟嘌呤(G)和胞嘧啶(C)、胸腺嘧啶(T)RNA所含碱基有:腺嘌呤(A)、鸟嘌呤(G)和胞嘧啶(C)、尿 嘧 啶(U)5、 核酸的分布:真核细胞的DNA主要分布在细胞核中;线粒体、叶绿体内也含有少量的DNA;原核细胞主要存在于拟核中。 RNA主要分布在细胞质中。 观察DNA和RNA在细胞中的分布实验:利用甲基绿和吡罗红两种染色剂,甲基绿使DNA呈现绿色,吡罗红使RNA 斐林试剂 双缩尿试剂 苏丹红试剂碘液吡罗红甲基绿甲液乙液A液B液苏丹III苏丹IV成分0.1/mLNaOH溶液0.05/mLCuSO4溶液0.1/mLNaOH溶液0.01/mLCuSO4溶液鉴定物质可溶性还原糖 蛋白质脂肪淀粉RNADNA添加顺序甲乙两夜等量混匀后立即使用先加入A液1mL,摇匀,再加入B液4滴,摇匀反应水浴5065摄氏度不需加热,摇匀即可不需加热不需加热不加热不加热条件反应现象样液为砖红色样液变紫色样液为橘黄色样液为红色样液为蓝色红色绿色 呈现红色,从而显示DN和ARNA在细胞中的分布。第四节 细胞中的糖类和脂质一、相关概念: 糖类:是主要的能源物质;主要分为单糖、二糖和多糖等单糖:是不能再水解的糖。如葡萄糖。二糖:是水解后能生成两分子单糖的糖。多糖:是水解后能生成许多单糖的糖。多糖的基本组成单位都是葡萄糖。可溶性还原性糖:葡萄糖、果糖、麦芽糖等二、糖类的比较: 分类元素常见种类分布主要功能单糖CH核糖动植物组成核酸O脱氧核糖葡萄糖、果糖、半乳糖重要能源物质二糖蔗糖植物麦芽糖乳糖动物多糖淀粉植物植物贮能物质纤维素细胞壁主要成分糖原(肝糖原、肌糖原)动物动物贮能物质三、脂质的比较:分类元素常见种类功能脂质脂肪C、H、O1、主要储能物质2、保温3、减少摩擦,缓冲和减压磷脂C、H、O(N、P)细胞膜的主要成分固醇胆固醇与细胞膜流动性有关性激素维持生物第二性征,促进生殖器官发育维生素D有利于Ca、P吸收第五节 细胞中的无机物一、有关水的知识要点 存在形式含量功能联系水自由水约951、良好溶剂2、参与多种化学反应3、运送养料和代谢废物它们可相互转化;代谢旺盛时自由水含量增多,反之,含量减少。结合水约4.5细胞结构的重要组成成分不同生物含水量特点 是细胞和生物体中含量最多的物质 含水量:水生陆生/幼年成年老年/代谢旺盛代谢缓慢/幼嫩细胞衰老细胞二、无机盐(绝大多数以离子形式存在)功能: 、构成某些重要的化合物,如:叶绿素、血红蛋白等 、维持生物体的生命活动(如动物缺钙会抽搐) 、维持酸碱平衡,调节渗透压。无机盐存在的形式及含量1 含量:很少,约占细胞鲜重的1%5%2 存在形式:大多数无机盐以离子的形式存在于细胞中,少数以化合物的形式存在与细胞中。第三章 细胞的基本结构第一节 细胞膜-系统的边界一、细胞膜的成分:主要是脂质(约50)和蛋白质(约40),还有少量糖类(约2-10)二、细胞膜的功能: 、将细胞与外界环境分隔开 、控制物质进出细胞 、进行细胞间的信息交流3、 植物细胞还有细胞壁,主要成分是纤维素和果胶,对细胞有支持和保护作用;其性质是全透性的。4、 细胞膜的几个特性a. 镶嵌性:膜的基本结构是由磷脂双分子层镶嵌蛋白质(如受体、载体蛋白、酶蛋白)b. 流动性:流动性膜结构中蛋白质和脂类分子在膜中可做各种形式的移动,膜整体结构也具有流动性。流动性具有重要生理意义,与物质运输、细胞识别、细胞融合、细胞表面受体功能调节等有关。C. 不对称性:膜两侧的分子性质和结构不相同。第二节 细胞器-系统内的分工合作一、相关概念: 细 胞 质:在细胞膜以内、细胞核以外的原生质,叫做细胞质。细胞质主要包括细胞质基质和细胞器。细胞质基质:细胞质内呈液态的部分是基质。是细胞进行新陈代谢的主要场所。细 胞 器:细胞质中具有特定功能的各种亚细胞结构的总称。二、八大细胞器的比较:1、线粒体:(呈粒状、棒状,具有双层膜,普遍存在于动、植物细胞中,内有少量DNA和RNA内膜突起形成嵴,内膜、基质和基粒中有许多种与有氧呼吸有关的酶),线粒体是细胞进行有氧呼吸的主要场所,生命活动所需要的能量,大约95%来自线粒体,是细胞的“动力车间”2、叶绿体:(呈扁平的椭球形或球形,具有双层膜,主要存在绿色植物叶肉细胞里),叶绿体是植物进行光合作用的细胞器,是植物细胞的“养料制造车间”和“能量转换站”,(含有叶绿素和类胡萝卜素,还有少量DNA和RNA,叶绿素分布在基粒片层的膜上。在片层结构的膜上和叶绿体内的基质中,含有光合作用需要的酶)。 3、核糖体:椭球形粒状小体,有些附着在内质网上,有些游离在细胞质基质中。是细胞内将氨基酸合成蛋白质的场所。4、内质网:由膜结构连接而成的网状物。是细胞内蛋白质合成和加工,以及脂质合成的“车间”5、高尔基体:在植物细胞中与细胞壁的形成有关,在动物细胞中与蛋白质(分泌蛋白)的加工、分类运输有关。 6、中心体:每个中心体含两个中心粒,呈垂直排列,存在于动物细胞和低等植物细胞,与细胞的有丝分裂有关。 7、液泡:主要存在于成熟植物细胞中,液泡内有细胞液。化学成分:有机酸、生物碱、糖类、蛋白质、无机盐、色素等。有维持细胞形态、储存养料、调节细胞渗透吸水的作用。 8、溶酶体:有“消化车间”之称,内含多种水解酶,能分解衰老、损伤的细胞器,吞噬并杀死侵入细胞的病毒或病菌。 9、细胞壁:植物细胞壁的成分和作用 化学成分:纤维素和果胶。 作 用:支撑和保护作用 细胞的基本结构:细胞核、核糖体、内质网、高尔基体、溶酶体、叶绿体、细胞质基质、细胞膜、 线粒体、 细胞壁。 动物细胞的基本结构:细胞核、核糖体、内质网、高尔基体、溶酶体、中心体、细胞质基质、细胞 膜、线粒体。三、分泌蛋白的合成和运输: 核糖体(合成肽链)内质网(加工成具有一定空间结构的蛋白质)高尔基体(进一步修饰加工)囊泡细胞膜细胞外四、生物膜系统的组成:包括细胞器膜、细胞膜和核膜等。第三节 细胞核-系统的控制中心一、细胞核的功能:是遗传信息库(遗传物质储存和复制的场所),是细胞代谢和遗传的控制中心;二、细胞核的结构: 1、染色质:由DNA和蛋白质组成,染色质和染色体是同样物质在细胞不同时期的两种存在状态。 2、核 膜:双层膜,把核内物质与细胞质分开。 3、核 仁:与某种RNA的合成以及核糖体的形成有关。 4、核 孔:实现细胞核与细胞质之间的物质交换和信息交流。细胞膜的制备 1、选材:人或动物成熟的红细胞。原因:没有细胞器 没有细胞核 没有细胞壁其他材料:蒸馏水、滴管、吸水纸、载玻片、盖玻片、显微镜 2、原理:细胞内的物质有一定浓度。把红细胞放入清水中 ,水会进入红细胞,导致红细胞吸水涨破,使细胞膜内的物质流出来,除去细胞内的其他物质得到细胞膜。 3、方法和步骤将红细胞稀释液制成装片。在高倍镜下观察,盖玻片一侧滴加蒸馏水,在另一侧用吸水纸吸引。红细胞凹陷消失,体积增大,最后导致细胞破裂,内容物流出。利用离心法获得纯净的细胞膜。 1有一定的结构就必然有与之相对应功能的存在; 结构和功能相统一 2任何功能都需要一定的结构来完成 1各种细胞器既有形态结构和功能上的差异,又相互联系,相互依存 分工合作 2细胞的生物膜系统体现细胞各结构之间的协调配合。 生物的整体性:整体大于各部分之和;只有在各部分组成一个整体的时才能体现出生命现象。 结构:细胞的各个部分是相互联系的。如分布在细胞质的内质网内连核膜,外接细胞膜。 功能:细胞的不同结构有不同的生理功能,但却是协调配合的。如分泌蛋白的合成与分泌。 调控:细胞核是代谢的调控中心。其DNA通过控制蛋白质类物质的合成调控生命活动。 与外界的关系上:每个细胞都要与相邻细胞、而与外界环境直接接触的细胞都要和外界环境进行物质交换和能量转换。第四章 细胞的物质输入和输出第一节 物质跨膜运输的实例1、 渗透作用:水分子(溶剂分子)通过半透膜的扩散作用。1) 原理:动物:水分从水势高的系统通过细胞膜(半透膜)向水势低的系统移动。 植物:水分从水势高的系统通过原生质层(半透膜)向水势低的系统移动。2) 条件:、具有半透膜 、膜两侧有浓度差3) 选择透过性膜(半透膜) 可以让水分子自由通过,一些离子和小分子也可以通过,而其他离子、小分子和大分子则不能通过的一 类膜的总称。 4) 生物膜是一种选择透过性膜,是严格的半透膜。二、原生质层:细胞膜和液泡膜以及两层膜之间的细胞质。三、细胞的吸水和失水1)动物细胞的吸水和失水 外界溶液浓度细胞内溶液浓度细胞失水而褶皱 外界溶液浓度细胞内溶液浓度细胞吸水,吸水过多细胞涨破。 外界溶液浓度= 细胞内溶液浓度细胞既不吸水也不失水。2)植物细胞吸水和失水1 未形成液泡的细胞,靠吸涨作用吸水;这样的细胞主要靠细胞内的蛋白质、淀粉和纤维素等亲水性物质吸收水分,叫做吸涨作用。干燥的种子和根尖分生区的细胞,主要靠吸涨作用吸收水分。(注意:蛋白质、淀粉和纤维素的亲水性一次减弱)2 液泡形成以后,细胞主要靠渗透作用吸水;细胞液浓度外界溶液浓度细胞吸水;细胞液浓度外界溶液浓度细胞失水。 3 成熟的植物细胞是一个渗透系统:植物的最外层是细胞壁,主要由纤维素分子组成,分子间空隙较大,一切溶剂和溶质都能够透过,细胞壁是全透过性的。细胞膜和液泡膜是选择透过性膜。我们可以把细胞膜、液泡膜、以及两膜之间的其他物质即“原生质”当做一层选择透过性膜,“膜”内的细胞液有一定的浓度,与细胞的溶液存在浓度差。这样,细胞也就通过这层选择透过性膜与外界环境中的溶液发生渗透作用。4 质壁分离与质壁分离复原a. 外界溶液浓度细胞溶液浓度渗透失水质壁分离b. 外界溶液浓度细胞溶液浓度渗透吸水质壁分离复原质壁分离与复原实验可拓展应用于:(指的是原生质层与细胞壁) 证明成熟植物细胞发生渗透作用;证明细胞是否是活的; 作为光学显微镜下观察细胞膜的方法初步测定细胞液浓度的大小;细胞的吸水和失水: 第二节 生物膜的流动镶嵌模型一、细胞膜结构: 磷脂 蛋白质 糖类 磷脂双分子层 “镶嵌蛋白” 糖被(与细胞识别有关)(膜基本支架)二、结构特点:具有一定的流动性 细胞膜(生物膜) 功能特点:选择透过性第三节 物质跨膜运输的方式一、相关概念:自由扩散:物质通过简单的扩散作用进出细胞。 协助扩散:进出细胞的物质要借助载体蛋白的扩散。 主动运输:物质从低浓度一侧运输到高浓度一侧,需要载体蛋白的协助,同时还需要消耗细胞内化学反应所释放的能量。二、 自由扩散、协助扩散和主动运输的比较:比较项目运输方向是否要载体是否消耗能量代表例子自由扩散高浓度低浓度不需要不消耗O2、CO2、H2O、乙醇、甘油等协助扩散高浓度低浓度需要不消耗葡萄糖进入红细胞等主动运输低浓度高浓度需要消耗氨基酸、各种离子等3、 离子和小分子物质主要以被动运输(自由扩散、协助扩散)和主动运输的方式进出细胞;大分子和颗粒物质进出细胞的主要方式是胞吞作用和胞吐作用。 胞吞(内吞)胞吐(外排)条件细胞摄取或排出大分子和颗粒物质的方式原理生物膜的流动性特点物质通过小泡转移,需要消耗能量,不需要载体方向细胞外内细胞内外实例变形虫吞食食物颗粒,白细胞吞噬病菌等胰岛B细胞分泌胰岛素四、物质运输速率的因素一定浓度范围内,协助扩散或主动运输速率不再随物质浓的增大而加快时,主要是因为细胞膜上运输该物质的载体蛋白的数量有限。主动运输还可能受细胞内能量供应的限制。 温度二、流动镶嵌模型 1、生物膜的流动镶嵌模型的基本内容(1)磷脂双分子层构成膜的基本骨架,其结构特点是具有流动性。(2)蛋白质分子有的镶嵌在磷脂分子层表面,有的部分或全部嵌入磷脂双分子层中,有的横跨整个磷脂双分子层;大多数蛋白质分子是运动的。(3)细胞膜的表面的糖类可以和蛋白质结合形成糖蛋白,也可以和脂质结合形成糖脂。2、细胞膜流动性的实例: 质壁分离和复原实验; 变形虫捕食和运动时伪足的形成; 白细胞吞噬细菌; 胞吞与胞吐; 载体对相应物质的转运; 受精时细胞的融合过程; 动物细胞分裂时细胞膜的缢裂过程; 细胞杂交时的细胞融合(如人鼠细胞融合); 兴奋在突触的传递。3、流动性与选择透过性都是对细胞膜的描述,但两者既有区别又有联系。区别:流动性是细胞膜结构方面的特性,选择透过性体现 了细胞膜功能方面的特性,主动运输能充分说明选 择透过性。联系:细胞膜的流动性是表现其选择透过性的结构基础。因为只有细胞膜具有流动性,细胞才能完成其各项生理功能,才能表现出选择透过性。相反,如果细胞膜失去了选择透过性,细胞可能已经死亡了。4、生物膜的探索历程 时间、人物 依据 结论或假说19世纪末 欧文顿凡能溶于脂质的物质,必不能溶于纸质的物质更容易通过细胞膜 细胞膜是由脂质组成的20世纪初分离分离并析出哺乳动物红细胞膜的主要成分为脂质和蛋白质1925年两位荷兰科学家把红细胞膜中的脂质提取出来,在空气水界面上铺成单分子层,测得其面积恰是红细胞表面积的2倍红细胞膜中的脂质分子必然排列为连续的两层20世纪40年代有学者在荷兰科学家的研究基础上推测脂质的两边各覆盖着蛋白质“双分子层模型”细胞膜是由双层脂质分子及内外表面附着的蛋白质构成的1959年罗伯特森电显微镜下看到细胞膜清晰的一亮一暗三层结构所有生物膜都是由蛋白质脂质蛋白质三层结构构成1970年人属细胞融合实验细胞膜具有流动性1972年桑格和尼文森在前人研究的基础上提出了细胞膜的流动镶嵌模型第5章 细胞的能量供应和利用矿质元素C3C5ATPADP+PiH原生质热能C6H12O6ATPADP+Pi H2O 外界水 H2O O2 光 叶绿体的色素 CO2+H2O C3H6O3 C2H5OH+CO2 第一节 降低化学反应活化能的酶一、相关概念: 新陈代谢:是活细胞中全部化学反应的总称,是生物与非生物最根本的区别,是生物体进行一切生命活动的基础。 细胞代谢:细胞中每时每刻都进行着的许多化学反应。 酶:是活细胞(来源)所产生的具有催化作用(功能:降低化学反应活化能,提高化学反应速率)的一类有机物。 活 化 能:分子从常态转变为容易发生化学反应的活跃状态所需要的能量。二、酶的发现:、1783年,意大利科学家斯巴兰让尼用实验证明:胃具有化学性消化的作用; 、1836年,德国科学家施旺从胃液中提取了胃蛋白酶; 、1926年,美国科学家萨姆纳通过化学实验证明脲酶是一种蛋白质;、20世纪80年代,美国科学家切赫和奥特曼发现少数RNA也具有生物催化作用。三、酶的本质:大多数酶的化学本质是蛋白质(合成酶的场所主要是核糖体,水解酶的酶是蛋白酶),也有少数是RNA。四、酶的特性: 、高效性:催化效率比无机催化剂高许多。 、专一性:每种酶只能催化一种或一类化合物的化学反应。、酶需要较温和的作用条件:在最适宜的温度和pH下,酶的活性最高。温度和pH偏高和偏低,酶的活性都会明显降低。酶的催化作用需要适宜的温度、pH值等,过酸、过碱、高温都会破坏酶分子结构。低温也会影响酶的活性,但不破坏酶的分子结构。图例V V V酶浓度 底物浓度S 温度解析在底物足够,其他因素固定的条件下,酶促反应的速度与酶浓度成正比。在S在一定范围内,V随S增加而加快,近乎成正比;当S很大且达到一定限度时,V也达到一个最大值,此时即使再增加S,反应几乎不再改变。 在一定温度范围内V随T的升高而加快在一定条件下,每一种酶在某一温度时活力最大,称最适温度;当温度升高到一定限度时,V反而随温度的升高而降低。 第二节 细胞的能量“通货”-ATP1、 ATP(三磷酸腺苷) ATP是生物体细胞内普遍存在的一种高能磷酸化合物,是生物体进行各项生命活动的直接能源,它的水解与合成存在着能量的释放与贮存。1结构简式 APPP合成酶水解酶水解酶动态平衡合成酶腺苷 普通化学键 高能磷酸键 磷酸基团 (13.8KJ/mol) (30.54KJ/mol)2ATP与ADP的转化 ATP ADP+Pi+能量 ATP 放能呼吸作用 每一个细胞的生命活动(线粒体、 吸能细胞质) Pi Pi ADP 糖类主要能源物质 热能散失太阳光能 脂肪主要储能物质 氧化分解(直接能源) 蛋白质能源物质之一 化学能ATP 二、ATP与ADP的转化:能量ATPADP + Pi + 酶第三节ATP的主要来源-细胞呼吸一、相关概念: 1、呼吸作用(也叫细胞呼吸):指有机物在细胞内经过一系列的氧化分解,最终生成 二氧化碳或其它产物,释放出能量并生成ATP的过程。根据是否有氧参与,分为:有氧呼吸和无氧呼吸 2、有氧呼吸:指细胞在有氧的参与下,通过多种酶的催化作用下,把葡萄糖等有机物彻底氧化分解,产生二氧化碳和水,释放出大量能量,生成ATP的过程。3、无氧呼吸:一般是指细胞在无氧的条件下,通过酶的催化作用,把葡萄糖等有机物分解为不彻底的氧化产物(酒精、CO2或乳酸),同时释放出少量能量的过程。4、发酵:微生物(如:酵母菌、乳酸菌)的无氧呼吸。二、有氧呼吸的总反应式:酶 C6H12O6 + 6O2 6CO2 + 6H2O + 能量三、无氧呼吸的总反应式:酶 C6H12O6 2C2H5OH(酒精)+ 2CO2 + 少量能量或 酶 C6H12O6 2C3H6O3(乳酸)+ 少量能量四、有氧呼吸过程(主要在线粒体中进行): 场所发生反应产物第一阶段细胞质基质葡萄糖酶2丙酮酸 少量能量H+丙酮酸、H、释放少量能量,形成少量ATP第二阶段线粒体基质6CO26H2O酶2丙酮酸少量能量H+ +CO2、H、释放少量能量,形成少量ATP第三阶段H2O酶大量能量H+线粒体内膜O2生成H2O、释放大量能量,形成大量ATP 五、有氧呼吸与无氧呼吸的比较: 呼吸方式有氧呼吸无氧呼吸不同点场所细胞质基质,线粒体基质、内膜细胞质基质条件氧气、多种酶无氧气参与、多种酶物质变化葡萄糖彻底分解,产生CO2和H2O葡萄糖分解不彻底,生成乳酸或酒精等能量变化释放大量能量(1161kJ被利用,其余以热能散失),形成大量ATP释放少量能量,形成少量ATP六、影响呼吸速率的因素: 1、内部因素遗传因素(决定酶的种类和数量)(1) 不同植物细胞呼吸速率不同,如旱生植物小于水生植物。(2)同一植物不同生长发育时期细胞呼吸速率不同,如幼苗期、开花期细胞呼吸速率较高(3)同一植株不同的器官,呼吸速率也有很大的差异,如生殖器官大于营养器官。2、环境因素(1)温度温度以影响酶的活性影响呼吸速率。在最低点与最适点之间,呼吸酶活性低,呼吸作用受抑制,呼吸速率随温度的升高而加快。超过最适点,呼吸酶活性降低甚至变性失活,呼吸作用受到抑制,呼吸速率则会随着温度的增高而下降。(2)O2的浓度植物在O2浓度为0时只进行无氧呼吸,大多数植物无氧呼吸的产物是酒精和CO2;O2浓度在010%时,既进行有氧呼吸又进行无氧呼吸;在O2浓度5%时,呼吸作用最弱;在O2浓度超过10%时,只进行有氧呼吸。有氧环境对无氧呼吸起抑制作用,抑制作用随氧浓度的增加而增强,直至无氧呼吸完全停止在一定氧浓度范围内,有氧呼吸的强度随氧浓度的增加而增强。呼吸强度呼吸强度(3)CO2浓度从化学平衡角度分析,CO2浓度增加,呼吸速率下降。(4)含水量在一定范围内,呼吸作用强度随含水量的增加而增强,含水量%CO2浓度随含水量的减少而减弱七、呼吸作用在生产上的应用:1、作物栽培时,要有适当措施保证根的正常呼吸,如疏松土壤等。2、粮油种子贮藏时,要风干、降温,降低氧气含量,则能抑制呼吸作用,减少有机物消耗。3、水果、蔬菜保鲜时,要低温或降低氧气含量及增加二氧化碳浓度,抑制呼吸作用。第四节 能量之源-光与光合作用一、相关概念: 1、光合作用:绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并释放出氧气的过程二、光合色素(在类囊体的薄膜上): 叶绿素a (蓝绿色) 叶绿素主要吸收红光和蓝紫光叶绿素b (黄绿色) 色素 胡萝卜素 (橙黄色) 类胡萝卜素主要吸收蓝紫光叶黄素 (黄色)三、光合作用的探究历程: 内容时间过程结论普里斯特1771年蜡烛、小鼠、绿色植物实验植物可以更新空气 萨克斯1864年叶片遮光实验绿色植物在光合作用中产生淀粉 恩格尔曼1880年水绵光合作用实验叶绿体是光合作用的场所释放出氧鲁宾与卡门1939年同位素标记法光合作用释放的氧全来自水四、叶绿体的功能:叶绿体是进行光合作用的场所。在类囊体的薄膜上分布着具有吸收光能的光合色素,在类囊体的薄膜上和叶绿体的基质中含有许多光合作用所必需的酶。五、影响光合作用的外界因素主要有: 1、光照强度:在一定范围内,光合速率随光照强度的增强而加快,超过光饱合点,光合速率反而会下降。 2、温度:温度可影响酶的活性。 3、二氧化碳浓度:在一定范围内,光合速率随二氧化碳浓度的增加而加快,达到一定程度后,光合速率维持在一定的水平,不再增加。 4、水:光合作用的原料之一,缺少时光合速率下降。六、光合作用的应用: 1、适当提高光照强度。 2、延长光合作用的时间。 3、增加光合作用的面积-合理密植,间作套种。 4、温室大棚用无色透明玻璃。 5、温室栽培植物时,白天适当提高温度,晚上适当降温。 6、温室栽培多施有机肥或放置干冰,提高二氧化碳浓度。七、光合作用的过程:光反应暗反应 条件光、H2O、色素、酶CO2、H、ATP、C5、酶时间短促较缓慢场所类囊体的薄膜上叶绿体的基质 过程 水的光解2H2O4H+O2ATP的合成:ADP+Pi+光能ATPCO2的固定:CO2+C52C3 C3/CO2的还原:2C3+H(CH2O)实质光能化学能,释放O2同化CO2,形成(CH2O) 总式光能叶绿体光能叶绿体CO2+H2O(CH2O)+O2 或CO2+12H2O(CH2O)+6O2+6H2O 物变无机物CO2、H2O有机物(CH2O)能变光能ATP中活跃的化学能有机物中稳定的化学能 同位素示踪光反应 暗反应光固定 还原暗反应光反应减弱暗反应14C 2C3 (14CH2O) 3H2O 3H (C3H2O) H218O 18O2 人为创设条件,看物质变化: (1)光照强弱 H C3还原减弱 C3 (CH2O) CO2供应不变 ATP CO2固定仍正常进行 C5 合成量(2)光照不变 CO2固定减弱 C3 H (CH2O)减少CO2供应 C3还原仍正常进行 C5 ATP 合成量光合作用的实质 通过光反应把光能转变成活跃的化学能,通过暗反应把二氧化碳和水合成有机物,同时把活跃的化学能转变成稳定的化学能贮存在有机物中。 4、光合作用的意义制造有机物,实现物质转变,将CO2和H2O合成有机物,转化并储存太阳能;调节大气中的O2和CO2含量保持相对稳定;生物生命活动所需能量的最终来源;注:光合作用是生物界最基本的物质代谢和能量代谢。5、影响光合作用速率的因素及其在生产上的应用光合速率是光合作用强度的指标,它是指单位时间内单位面积的叶片合成有机物的速率。影响因素包括植物自身内部的因素,如处在不同生育期等,以及多种外部因素。(1)单因子对光合作用速率影响的分析光照强度(如图所示)曲线分析:A点光照强度为0,此时只进行细胞呼吸,释放CO2量表明此时的呼吸强度。AB段表明光照强度加强,光合作用逐渐加强,CO2的释放量逐渐减少,有一部分用于光合作用;而到B点时,细胞呼吸释放的CO2全部用于光合作用,即光合作用强度=细胞呼吸强度,称B点为光补偿点(植物白天的光照强度在光补偿点以上,植物才能正常生长)。BC段表明随着光照强度不断加强,光合作用强度不断加强,到C点以上不再加强了,称C点为光饱和点。应用:阴生植物的光补偿点和光饱和点比较低,如上图虚线所示。间作套种时农作物的种类搭配,林带树种的配置,冬季温室栽培避免高温等都与光补偿点有关。 光照面积(如图所示)曲线分析:OA段表明随叶面积的不断增大,光合作用实际量不断增大,A点为光合作用叶面积的饱和点。随叶面积的增大,光合作用不再增加,原因是有很多叶被遮挡,光照强度在光补偿点以下。OB段表明干物质量随光合作用增加而增加,而由于A点以后光合作用不再增加,但叶片随叶面积的不断增加呼吸量(OC段)不断增加,所以干物质积累量不断降低(BC段)。应用:适当间苗、修剪,合理施肥、浇水,避免徒长。封行过早,使中下层叶子所受的光照往往在光补偿点以下,白白消耗有机物,造成不必要的浪费。 CO2浓度、含水量和矿质元素(如图所示)曲线分析:CO2和水是光合作用的原料,矿质元素直接或间接影响光合作用。在一定范围内,CO2、水和矿质元素越多,光合作用速率越快,但到A点时,即CO2、水、矿质元素达到饱和时,就不再增加了。应用:“正其行,通其风”,温室内充CO2,即提高CO2浓度,增加产量的方法.合理施肥可促进叶片面积增大,提高酶的合成速率,增加光合作用速率。 温度(如图所示)曲线分析:光合作用是在酶催化下进行的,温度直接影响酶的活性。一般植物在1035下正常进行光合作用,其中AB段(1035)随温度的升高而逐渐加强,B点(35)以上光合酶活性下降,光合作用开始下降,50左右光合作用完全停止。应用:冬天温室栽培可适当提高温度;夏天,温室栽培可适当降低温度。白天调到光合作用最适温度,以提高光合作用:晚上适当降低温室温度,以降低细胞呼吸,保证有机物的积累。 叶龄(如图所示)曲线分析:OA段为幼叶,随幼叶的不断生长,叶面积不断增大,叶内叶绿体不断增多,叶绿素含量不断增加,光合作用速率不断增加。AB段为壮叶,叶片的面积、叶绿体的叶绿素都处于稳定状态,光合速率也基本稳定。BC段为老叶,随着叶龄的增加,叶片内叶绿素被破坏,光合速率也随之下降。应用:农作物、果树管理后期适当摘除老叶、残叶及茎叶蔬菜及时换新叶,都是根据其原理,降低其细胞呼吸消耗有机物。(2)多因子对光合作用速率影响的分析(如图所示)曲线分析:P点时,限制光合速率的因素应为横坐标所表示的因子,随着因子的不断加强,光合速率不断提高。当到Q点时,横坐标所表示的因素,不再是影响光合速率的因子,要想提高光合速率,可采取适当提高图示中的其他因子的方法。应用:温室栽培时,在一定光照强度下,白天适当提高温度,增加光合酶的活性,提高光合速率,也可同时适当充加CO2,进一步提高光合速率。当温度适宜时,可适当增加光照强度和CO2浓度以提高光合速率。总之,可根据具体情况,通过增加光照强度,调节温度或增加CO2浓度来充分提高光合速率,以达到增产的目的6、总结:光合作用在现实生活中提高农作物产量:延长光合作用时间、增大光合作用面积合理密植改变植物种植方式:轮作、间作、套作提高光合作用速度覆盖地膜使用温室大棚使用农家肥、化肥 “正其行,通其风”大棚中适当提高二氧化碳的浓度补充人工光照7、计算 真光合作用速率=净光合作用速率+细胞呼吸作用速率CO2吸收DB真光合作用=净光合作用+呼吸作用净光合作用O A C呼吸作用 光照强度ECO2释放光合作用制造的有机物=光合作用积累的有机物+细胞呼吸消耗的有机物解析:制造的就是生产的总量,其中一部分被储存起来,就是积累的,另一部分被呼吸消耗光合作用利用二氧化碳的量=从外界吸收的二氧化碳的量+细胞呼吸释放的二氧化碳的量解析:光合作用利用CO2的量有两个来源,一个是外界吸收的,另一个是自身呼吸放出的,二者都被光合作用利用。六、比较光合作用和细胞呼吸作用 光合作用呼吸作用反应场所绿色植物(在叶绿体中进行)所有生物(主要在线粒体中进行)反应条件光、色素、酶等酶(时刻进行)物质转变无机物CO2和H2O合成有机物(CH2O)分解有机物产生CO2和H2O能量转变把光能转变成化学能储存在有机物中释放有机物的能量,部分转移ATP实质合成有机物、储存能量分解有机物、释放能量、产生ATP联系有机物、氧气能量、二氧化碳 光合作用 呼吸作用 五、化能合成作用自然界中少数种类的细菌,虽然细胞内没有色素,不能进行光合作用,但是能够利用体外环境中某些无机物氧化时释放的能量来制造有机物,这种合成作用叫做化能合成作用。例如:硝化细菌、硫细菌、铁细菌等少数种类的细菌。下图为硝化细菌的化能合成作用进行光合作用和化能合成作用的生物都是自养型生物;而只能利用环境中现成的有机物来维持自身生命活动的生物是异养型生物。第六章 细胞的生命历程生长 繁殖 衰老 癌变 凋亡1、 个体的生长细胞不能无限生长,限制条件二、细胞增殖 1、 细胞周期连续分裂的细胞,从上一次分裂完成时开始,到下一次分裂完成时为止,为一个细胞周期。分裂间期:DNA复制与蛋白质的合成,分为G1期、S期、G2期分裂期M:前期:核膜核仁消失;染色质变成染色体,纺锤丝变成纺锤体;形态散乱 中期:染色体排成一个平面,叫赤道板;纺锤体清晰可见;便于观察 后期:着丝点一分为二裂开;染色体数加倍,平均分配并向两极移动 末期:核膜核仁出现;染色体变成染色质,纺锤体消失;细胞壁重建 G1期:合成DNA聚合酶和合成RNA所必不可少的其他酶系。 S 期:DNA的合成 G2期:RNA和蛋白质的合成,特别是微管蛋白的合成。记忆口诀:膜仁消失现两体,形定数晰赤道齐,点裂数增均两极,两消两现重开始2、细胞分裂的过程(动物细胞) 前期末期后期中期3、着丝点、染色体、染色单体和DNA的数量变复制分裂DNA122染色体112染色单体020注意:染色体数 = 着丝点数 DNA数 = 线条数 染色体复制后才有染色单体,着丝点分裂后又无染色单体4、假定某生物体
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 工作计划


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!