资源描述
第二节两条直线的位置关系 考纲传真1.能根据两条直线的斜率判定这两条直线平行或垂直.2.能用解方程组的方法求两条相交直线的交点坐标.3.掌握两点间的距离公式、点到直线的距离公式,会求两平行直线间的距离1两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线l1,l2,若其斜率分别为k1,k2,则有l1l2k1k2.当直线l1,l2不重合且斜率都不存在时,l1l2.(2)两条直线垂直如果两条直线l1,l2的斜率存在,设为k1,k2,则有l1l2k1k21.当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l1l2.2两条直线的交点的求法直线l1:A1xB1yC10,l2:A2xB2yC20(A1,B1,C1,A2,B2,C2为常数),则l1与l2的交点坐标就是方程组的解3距离P1(x1,y1),P2(x2,y2)两点之间的距离|P1P2|d点P0(x0,y0)到直线l:AxByC0的距离d平行线AxByC10与AxByC20间的距离d1(思考辨析)判断下列结论的正误(正确的打“”,错误的打“”)(1)当直线l1和l2斜率都存在时,一定有k1k2l1l2.()(2)如果两条直线l1与l2垂直,则它们的斜率之积一定等于1.()(3)点P(x0,y0)到直线ykxb的距离为.()(4)已知直线l1:A1xB1yC10,l2:A2xB2yC20(A1,B1,C1,A2,B2,C2为常数),若直线l1l2,则A1A2B1B20.()(5)若点P,Q分别是两条平行线l1,l2上的任意一点,则P,Q两点的最小距离就是两条平行线的距离()答案(1)(2)(3)(4)(5)2(教材改编)已知点(a,2)(a0)到直线l:xy30的距离为1,则a等于()A.B.2C.1 D.1C由题意得1,即|a1|,又a0,a1.3直线l:(a2)x(a1)y60,则直线l恒过定点_(2,2)直线l的方程变形为a(xy)2xy60,由解得x2,y2,所以直线l恒过定点(2,2)4已知直线l1:ax(3a)y10,l2:x2y0.若l1l2,则实数a的值为_2由2,得a2.5(2017唐山调研)若直线l1:xay60与l2:(a2)x3y2a0平行,则l1与l2间的距离为_由l1l2,得a(a2)13,a3或a1.但a3时,l1与l2重合,舍去,a1,则l1:xy60,l2:xy0.故l1与l2间的距离d.两条直线的平行与垂直(1)设aR,则“a1”是“直线l1:ax2y10与直线l2:x(a1)y40平行”的()A充分不必要条件B.必要不充分条件C充要条件 D.既不充分也不必要条件(2)在ABC中,角A,B,C的对边分别为a,b,c,则直线xsin Aayc0与直线bxysin Bsin C0的位置关系是()A平行 B.垂直C重合 D.相交但不垂直(1)A(2)B(1)当a1时,显然l1l2,若l1l2,则a(a1)210,所以a1或a2.所以a1是直线l1与直线l2平行的充分不必要条件(2)在ABC中,由正弦定理,得1.又xsin Aayc0的斜率k1,bxysin Bsin C0的斜率k2,因此k1k21,两条直线垂直规律方法1.判定直线间的位置关系,要注意直线方程中字母参数取值的影响,不仅要考虑到斜率存在的一般情况,还要考虑到斜率不存在的特殊情况,同时还要注意x,y的系数不能同时为零这一隐含条件2在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论,可避免讨论另外当A2B2C20时,比例式与,的关系容易记住,在解答选择、填空题时,有时比较方便变式训练1已知过点A(2,m)和点B(m,4)的直线为l1,直线2xy10为l2,直线xny10为l3.若l1l2,l2l3,则实数mn的值为()A10B.2C.0D.8Al1l2,kAB2,解得m8.又l2l3,(2)1,解得n2,mn10.两直线的交点与距离问题(1)直线l过点P(1,2)且到点A(2,3)和点B(4,5)的距离相等,则直线l的方程为_(2)过点P(3,0)作一直线l,使它被两直线l1:2xy20和l2:xy30所截的线段AB以P为中点,求此直线l的方程. 【导学号:01772289】(1)x3y50或x1法一:当直线l的斜率存在时,设直线l的方程为y2k(x1),即kxyk20.由题意知,即|3k1|3k3|,k,直线l的方程为y2(x1),即x3y50.当直线l的斜率不存在时,直线l的方程为x1,也符合题意法二:当ABl时,有kkAB,直线l的方程为y2(x1),即x3y50.当l过AB中点时,AB的中点为(1,4),直线l的方程为x1.故所求直线l的方程为x3y50或x1.(2)设直线l与l1的交点为A(x0,y0),则直线l与l2的交点B(6x0,y0),2分由题意知解得6分即A,从而直线l的斜率k8,10分直线l的方程为y8(x3),即8xy240.12分规律方法1.求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程;也可利用过交点的直线系方程,再求参数2利用距离公式应注意:点P(x0,y0)到直线xa的距离d|x0a|,到直线yb的距离d|y0b|;两平行线间的距离公式要把两直线方程中x,y的系数化为相等变式训练2若直线l过点A(1,1)与已知直线l1:2xy60相交于B点,且|AB|5,求直线l的方程解过点A(1,1)与y轴平行的直线为x1.解方程组求得B点坐标为(1,4),此时|AB|5,即直线l的方程为x1.4分设过点A(1,1)且与y轴不平行的直线为y1k(x1),解方程组得x且y(k2,否则l与l1平行)则B点坐标为.8分又A(1,1),且|AB|5,所以2252,解得k.10分因此y1(x1),即3x4y10.综上可知,所求直线的方程为x1或3x4y10.12分对称问题(1)平面直角坐标系中直线y2x1关于点(1,1)对称的直线方程是_(2)光线从A(4,2)点射出,到直线yx上的B点后被直线yx反射到y轴上的C点,又被y轴反射,这时反射光线恰好过点D(1,6),则BC所在的直线方程是_(1)y2x3(2)10x3y80(1)法一:在直线l上任取一点P(x,y),其关于点(1,1)的对称点P(2x,2y)必在直线y2x1上,2y2(2x)1,即2xy30.因此,直线l的方程为y2x3.法二:由题意,l与直线y2x1平行,设l的方程为2xyc0(c1),则点(1,1)到两平行线的距离相等,解得c3.因此所求直线l的方程为y2x3.法三:在直线y2x1上任取两个点A(0,1),B(1,3),则点A关于点(1,1)对称的点M(2,1),B关于点(1,1)对称的点N(1,1)由两点式求出对称直线MN的方程为,即y2x3.(2)作出草图,如图所示,设A关于直线yx的对称点为A,D关于y轴的对称点为D,则易得A(2,4),D(1,6)由入射角等于反射角可得AD所在直线经过点B与C.故BC所在的直线方程为,即10x3y80.迁移探究1在题(1)中“将结论”改为“求点A(1,1)关于直线y2x1的对称点”,则结果如何?解设点A(1,1)关于直线y2x1的对称点为A(a,b),2分则AA的中点为,4分所以解得10分故点A(1,1)关于直线y2x1的对称点为.12分迁移探究2在题(1)中“关于点(1,1)对称”改为“关于直线xy0对称”,则结果如何?解在直线y2x1上任取两个点A(0,1),B(1,3),则点A关于直线xy0的对称点为M(1,0),点B关于直线xy0的对称点为N(3,1),6分根据两点式,得所求直线的方程为,即x2y10.12分规律方法1.第(1)题求解的关键是利用中点坐标公式,将直线关于点的中心对称转化为点关于点的对称2解决轴对称问题,一般是转化为求对称点问题,关键是要抓住两点,一是已知点与对称点的连线与对称轴垂直;二是已知点与对称点为端点的线段的中点在对称轴上变式训练3(2017广州模拟)直线x2y10关于直线xy20对称的直线方程是()Ax2y10B.2xy10C2xy30 D.x2y30B由题意得直线x2y10与直线xy20的交点坐标为(1,1)在直线x2y10上取点A(1,0),设A点关于直线xy20的对称点为B(m,n),则解得故所求直线的方程为,即2xy10.思想与方法1两直线的位置关系要考虑平行、垂直和重合对于斜率都存在且不重合的两条直线l1,l2,l1l2k1k2;l1l2k1k21.若有一条直线的斜率不存在,那么另一条直线的斜率一定要特别注意2对称问题一般是将线与线的对称转化为点与点的对称,点与线的对称,利用坐标转移法易错与防范1判断两条直线的位置关系时,首先应分析直线的斜率是否存在两条直线都有斜率,可根据判定定理判断,若直线无斜率时,要单独考虑2(1)求点到直线的距离时,应先化直线方程为一般式;(2)求两平行线之间的距离时,应先将方程化为一般式且x,y的系数对应相等
展开阅读全文