资源描述
课时分层训练(五十一)抛物线A组基础达标(建议用时:30分钟)一、选择题1(2016四川高考)抛物线y24x的焦点坐标是()A(0,2)B.(0,1)C(2,0) D.(1,0)D由y24x知p2,故抛物线的焦点坐标为(1,0)2(2017广东茂名二模)若动圆的圆心在抛物线yx2上,且与直线y30相切,则此圆恒过定点()A(0,2) B.(0,3)C(0,3) D.(0,6)C直线y30是抛物线x212y的准线,由抛物线的定义知抛物线上的点到直线y3的距离与到焦点(0,3)的距离相等,所以此圆恒过定点(0,3)3抛物线y24x的焦点到双曲线x21的渐近线的距离是()A. B.C1 D.B由双曲线x21知其渐近线方程为yx,即xy0,又y24x的焦点F(1,0),焦点F到直线的距离d.4设抛物线C:y22px(p0)的焦点为F,点M在C上,|MF|5.若以MF为直径的圆过点(0,2),则C的方程为()Ay24x或y28xBy22x或y28xCy24x或y216xDy22x或y216xC由已知得抛物线的焦点F,设点A(0,2),点M(x0,y0)则,.由已知得,0,即y8y0160,因而y04,M.由|MF|5,得5,又p0,解得p2或p8.故C的方程为y24x或y216x.5O为坐标原点,F为抛物线C:y24x的焦点,P为C上一点,若|PF|4,则POF的面积为() 【导学号:01772325】A2 B.2C2 D.4C如图,设点P的坐标为(x0,y0),由|PF|x04,得x03,代入抛物线方程得,y4324,所以|y0|2,所以SPOF|OF|y0|22.二、填空题6(2017山西四校三联)过抛物线y24x的焦点F作倾斜角为45的直线交抛物线于A,B两点,则弦长|AB|为_. 【导学号:01772326】8设A(x1,y1),B(x2,y2)易得抛物线的焦点是F(1,0),所以直线AB的方程是yx1.联立消去y得x26x10.所以x1x26,所以|AB|x1x2p628.7如图871,正方形ABCD和正方形DEFG的边长分别为a,b(a0)经过C,F两点,则_.图8711由题意可得C,F,则1(舍去1)8(2017江西九校联考)抛物线y22px(p0)的焦点为F,其准线与双曲线y2x21相交于A,B两点,若ABF为等边三角形,则p_.2y22px的准线为x.由于ABF为等边三角形因此不妨设A,B.又点A,B在双曲线y2x21,从而1,所以p2.三、解答题9已知抛物线y22px(p0),过点C(2,0)的直线l交抛物线于A,B两点,坐标原点为O,12.(1)求抛物线的方程;(2)当以|AB|为直径的圆与y轴相切时,求直线l的方程解(1)设l:xmy2,代入y22px中,得y22pmy4p0.2分设A(x1,y1),B(x2,y2),则y1y22pm,y1y24p,则x1x24,因为x1x2y1y244p12,可得p2,则抛物线的方程为y24x.5分(2)由(1)知y24x,p2,可知y1y24m,y1y28.7分设AB的中点为M,则|AB|2xMx1x2m(y1y2)44m24.又|AB|y1y2|.由得(1m2)(16m232)(4m24)2,10分解得m23,m,所以直线l的方程为xy20或xy20.12分10已知过抛物线y22px(p0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x10或t0,解得t0或t3.3抛物线y24x的焦点为F,过点F的直线交抛物线于A,B两点(1)若2 ,求直线AB的斜率;(2)设点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值 【导学号:01772328】解(1)依题意知F(1,0),设直线AB的方程为xmy1.将直线AB的方程与抛物线的方程联立,消去x得y24my40. 2分设A(x1,y1),B(x2,y2),所以y1y24m,y1y24.因为2 ,所以y12y2.联立上述三式,消去y1,y2得m.所以直线AB的斜率是2. 5分(2)由点C与原点O关于点M对称,得M是线段OC的中点,从而点O与点C到直线AB的距离相等,所以四边形OACB的面积等于2SAOB.8分因为2SAOB2|OF|y1y2| 4,所以当m0时,四边形OACB的面积最小,最小值是4. 12分
展开阅读全文