资源描述
1 1高考理科数学考点分类自测:双曲线一、选择题1“ab0)的右顶点为A,若该双曲线右支上存在两点B、C使得ABC为等腰直角三角形,则实数m的值可能为 ()A. B1C2 D 3二、填空题7已知点(2,3)在双曲线C:1(a0,b0)上,C的焦距为4,则它的离心率为_8已知双曲线kx2y21(k0)的一条渐近线与直线2xy10垂直,那么双曲线的离心率为_;渐近线方程为_9P为双曲线x21右支上一点,M、N分别是圆(x4)2y24和(x4)2y21上的点,则|PM|PN|的最大值为_三、解答题10已知双曲线关于两坐标轴对称,且与圆x2y210相交于点P(3,1),若此圆过点P的切线与双曲线的一条渐近线平行,求此双曲线的方程11双曲线1(a1,b0)的焦距为2c,直线l过点(a,0)和(0,b),且点(1,0)到直线l的距离与点(1,0)到直线l的距离之和sc,求双曲线的离心率e的取值范围12P(x0,y0)(x0a)是双曲线E:1(a0,b0)上一点,M、N分别是双曲线E的左、右顶点,直线PM,PN的斜率之积为.(1)求双曲线的离心率;(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足 ,求的值详解答案一、选择题1解析:若ax2by2c表示双曲线,即1表示双曲线,则0,这就是说“ab0”是必要条件,然而若ab0,c可以等于0,即“ab0,即0m1,根据选项知答案:A二、填空题7解析:根据点(2,3)在双曲线上,可以很容易建立一个关于a,b的等式,即1,考虑到焦距为4,这也是一个关于c的等式,2c4,即c2.再有双曲线自身的一个等式a2b2c2,这样,三个方程,三个未知量,可以解出a1,b,c2,所以,离心率e2.答案:28解析:双曲线kx2y21的渐近线方程是yx.双曲线的一条渐近线与直线2xy10垂直,k,双曲线的离心率为 e,渐近线方程为xy0.答案:xy09解析:双曲线的两个焦点为F1(4,0)、F2(4,0),为两个圆的圆心,半径分别为r12,r21,|PM|max|PF1|2, |PN|min|PF2|1,故|PM|PN|的最大值为(|PF1|2)(|PF2|1)|PF1|PF2|35.答案:5三、解答题10解:切点为P(3,1)的圆x2y210的切线方程是3xy10.双曲线的一条渐近线与此切线平行,且双曲线关于两坐标轴对称,两渐近线方程为3xy0.设所求双曲线方程为9x2y2(0)点P(3,1)在双曲线上,代入上式可得80,所求的双曲线方程为1.11解:直线l的方程为1,即bxayab0.由点到直线的距离公式,且a1,得到点(1,0)到直线l的距离d1,同理得到点(1,0)到直线l的距离d2.sd1d2.由sc,得c,即5a2c2.于是得52e2,即4e425e2250.解不等式,得e25.由于e1,e的取值范围是,12解:(1)点P(x0,y0)(xa)在双曲线1上,有1.由题意又有,可得a25b2,c2a2b26b2,则e.(2)联立,得4x210cx35b20,设A(x1,y1),B(x2,y2),则设 (x3,y3), ,即又C为双曲线上一点,即x5y5b2,有(x1x2)25(y1y2)25b2.化简得:2(x5y)(x5y)2(x1x25y1y2)5b2,又A(x1,y1),B(x2,y2)在双曲线上,所以x5y5b2,x5y5b2.由式又有x1x25y1y2x1x25(x1c)(x2c)4x1x25c(x1x2)5c210b2,得:240,解出0,或4.
展开阅读全文