不完全竞争 第14章 垄断论 第03节 寡头垄断产品市场 第31节 Cou

上传人:无*** 文档编号:64120307 上传时间:2022-03-21 格式:DOCX 页数:11 大小:114.21KB
返回 下载 相关 举报
不完全竞争 第14章 垄断论 第03节 寡头垄断产品市场 第31节 Cou_第1页
第1页 / 共11页
不完全竞争 第14章 垄断论 第03节 寡头垄断产品市场 第31节 Cou_第2页
第2页 / 共11页
不完全竞争 第14章 垄断论 第03节 寡头垄断产品市场 第31节 Cou_第3页
第3页 / 共11页
点击查看更多>>
资源描述
微观经济学:原理与模型第五篇 不完全竞争第十四章 垄断论第三节 寡头垄断产品市场3.1 Cournot 寡头竞争模型 Cournot寡头竞争模型由Antoine Austin Cournot(1838年)在研究产业经济学时提出,该模型研究了寡头垄断市场中,企业追求利润最大化时的决策问题。Cournot寡头竞争模型可以说是具有Nash均衡思想的最早模型,比Nash均衡均衡的严格定义早 了100多年。Cournot 寡头竞争模型包含了一下基本假设:(1)企业生产的产品是同质无异的。该假设意味着消费者在购买企业的产品时,仅根据产品的价格进行决策,即谁的价格低就购买谁的产品。(2)企业进行的是产量竞争,也就是说,企业的决策变量为产量。(3)模型为静态的,即企业的行动是同时的。用表示企业的产量,表示企业的成本,表示需求函数(其中是价格,即价格是产量的函数),则企业的利润为其中,是关于的可微函数。 对于追求利润最大化的企业而言,其面临的决策问题为对于上述优化问题,给定企业的最优选择,企业选择使自己的利润最大,若为企业的最优选择,则有由Nash均衡的定义可知,给企业为最大化自己的利润所选择的最优产量组合,即为上述博弈的Nash均衡。下面求解企业的最优产量组合,即这个博弈的Nash均衡产量组合。 由于可微,因此有最优化一阶条件可得根据上述一阶条件,可知如下函数上面两个函数分别描述了给定对手的产量,企业应该如何反应,因而分别称为企业1和企业2的反应函数(reaction function)。反应函数意味着每个企业的最优产量是另一个企业的产量的函数,两个反应函数的交点便是Nash均衡点。为了得到更具体的结果,考虑上述模型的简单情形。假设每个企业具有相同的不变单位成本,即 ,需求函数为线性形式,所以 此时,最优化的一阶条件为 企业的反应函数为联立求解上式,可得企业的Nash均衡产量为 (5-1)企业的Nash均衡利润分别为 (5-2) 在上述简单假设下,两个企业的反应函数均为直线,两条直线的交点即为Nash均衡,如图5-1所示。图5-1 Cournot 模型的Nash均衡从图5-1可以看到:在以上的简单假设下,Cournot模型的反应曲线是向下的,这是因为产品是同质无异的,一个企业增加产量则另一个企业就必须减少产量。因此从这种意义上说Cournot模型中参与人的战略是相互替代的。Cournot模型也可以利用重复剔除严格劣战略的方法寻找均衡。虽然在企业的反应函数中,每个企业的最优产量依赖于另一个企业的产量,使得Cournot模型并不存在占优战略均衡,但在利润函数及成本函数满足一定的条件下,仍然能够利用重复剔除严格劣战略的思路求解Nash均衡。在图5-2中,令为企业的垄断最优产量,即另一个企业产量为(不生产)时的产量。显然,任何一个企业此时都不会选择大于其垄断产量的产量。因此,第一轮剔除后,企业的战略集为;其次,给定企业2知道企业1将会在中选择,企业2将会在中选择,企业1将会在中选择,其中。以此类推,每次反应后参与人的产量区间不断缩小,无穷此重复此过程,最后将收敛到Nash均衡点。图5-2 Cournot 模型中企业产量的调整过程的Nash均衡需要说明的是,在上述讨论中,隐含的假定是稳定的均衡存在且唯一。实际上并不是任一个Cournot博弈的Nash均衡都是存在的,且即使存在也不一定唯一。要使Cournot模型中稳定的均衡存在且唯一是有条件的,它要求两个企业的反映函数和成本函数满足一定的条件。目前,对两个企业甚至是多个企业的Cournot模型的Nash均衡的存在性及唯一性条件,已经有一些初步的结果,感兴趣的读者可以参阅相关文献。前面的讨论是在假设企业单独决策的条件下得到企业的均衡产量和均衡利润。在企业的决策过程中,可能会出现企业联合起来垄断市场的情况。下面计算企业联合垄断市场时的最优产量和均衡利润。当企业联合起来垄断市场时,企业面临如下决策问题。容易计算出,最优垄断产量和垄断利润为将上式式(51)和式(52)比较,可以看出:当企业联合起来垄断市场时,市场上的垄断产量小于企业单独决策时市场上的总产量,但垄断利润却大于企业单独决策时市场上的利润之和。至此,有的读者或许会产生这样的疑问,既然垄断产量小于寡头总产量,而垄断利润大于寡头总利润,那么两个寡头企业可否联合起来垄断市场从而均分垄断利润呢?为了回答上述问题下面考察两个企业关于是否进行合作进行的博弈。现假设每一个企业都有两种选择“合作”与“不合作”。若企业选择“合作”,则企业的产量的为垄断产量的一半,即;若企业选择“不合作”,则企业的产量为Nash均衡产量,即。所以,当两个企业都选择“合作”时,每个企业的利润为;当两个企业都选择不合作时,每个企业的利润为;当一个企业选择“合作”而另外一个企业选择“不合作”时,则选择“合作”的企业的利润为而选择“不合作”的企业的利润为因此,企业之间关于是否合作而进行的博弈可以表示为如图53所示的战略式博弈。企业1 合作 不合作 合作企业2 不合作图 53 企业合作选择博弈的战略式描述 由此很容易看出:上述博弈有唯一的Nash均衡,那就是两个企业都选择“不合作”,即两个企业都合作从而使得各自的利润都得到增加的有效结果无法实现。这是典型的“囚徒困境”问题,垄断最优的情形在两个寡头的时候是无法达到的。产生该现象的原因在于每个企业在选择自己的最优产量时,只考虑到本企业利润的影响而忽略了对另一个企业的负外部效应。关于这一点,可以从下面的分析中看得更清楚。假设两个企业事先约定联合起来垄断市场,并规定每个企业都生产垄断产量一半的产量,即,但在实际生产中企业1按约定生产了,而企业2却生产了,即将自己的产量改变了。此时,企业1的利润为企业2的利润为只要,企业2的利润就可以大于垄断。这说明企业间的事先约定在实际生产中时无法得到遵守的,除非这种约定时有约束力的 在实际生产中,企业中的这种约定往往是不受法律保护的,在许多国家还被“反垄断法”所禁止,因此企业间的事先约定对企业可能是没有约束力的。但是,对于Nash均衡产量,企业都会自动遵守,假设产生了Nash均衡产量,而企业却产生了,即将Nash的均衡产量改变了,此时企业的利润为企业2的利润为只要,即企业2不生产Nash均衡产量,其利润都将小于均衡利润。因此,如果两个企业事先约定都生产Nash均衡产量,那么在实际生产中这种事先约定将会得到遵守,即使这种约定是没有约束力的。11
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 管理文书 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!