精校版冀教版八年级数学上册单元测试: 第17章 特殊三角形 单元测试

上传人:痛*** 文档编号:63924642 上传时间:2022-03-20 格式:DOC 页数:17 大小:232KB
返回 下载 相关 举报
精校版冀教版八年级数学上册单元测试: 第17章 特殊三角形 单元测试_第1页
第1页 / 共17页
精校版冀教版八年级数学上册单元测试: 第17章 特殊三角形 单元测试_第2页
第2页 / 共17页
精校版冀教版八年级数学上册单元测试: 第17章 特殊三角形 单元测试_第3页
第3页 / 共17页
点击查看更多>>
资源描述
最新精选优质数学资料最新精选优质数学资料第17章特殊三角形单元测试一、单选题(共10题;共30分)1.在下列几组数中不能作为直角三角形的三边长的是() A、7,24,25 B、7,12,15 C、5,12,13 D、3,4,52.RtABC中,已知C=90, A=30,BD是B的平分线,AC=18,则BD的值为() A、4.9 B、9 C、12 D、153.已知等腰ABC中,ADBC于点D,且AD=12BC,则ABC底角的度数为() A.45 B.75 C.45或15或75 D.604.用反证法证明“在一个三角形中,至少有一个内角小于或等于60”应先假设:在一个三角形中() A.至多有一个内角大于或等于60 B.至多有一个内角大于60C.每一个内角小于或等于60 D.每一个内角大于605.用反证法证明命题:“若a,b是整数,ab能被3整除,那么a,b中至少有一个能被3整除”时,假设应为() A.a,b都能被3整除 B.a不能被3整除C.a,b不都能被3整除 D.a,b都不能被3整除6.用反证法证明“ab”时应假设( ) A.ab B.ab C.a=b D.ab7.如图所示的正方形网格中,网格线的交点称为格点已知A、B是两格点,如果C也是图中的格点,且使得ABC为等腰三角形,则点C的个数是( ) A.6 B.7 C.8 D.98.如图,在ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则B的度数为( ) A、30 B、36 C、40 D、459.等腰三角形底边上的高为8,周长为32,则三角形的面积为( ) A、56 B、48 C、40 D、3210.如图,在RtABC中,ACB=90,AB= ,BC=2,则这个直角三角形的面积为( ) A、3 B、6 C、 D、二、填空题(共8题;共24分)11.如图,在ABC中,AD平分BAC,ADBD于点D,DEAC交AB于点E,若AB=8,则DE=_12.如图,O为矩形ABCD内的一点,满足OD=OC,若O点到边AB的距离为d,到边DC的距离为3d,且OB=2d,求该矩形对角线的长_13.按下列数据的规律填写:3,4,5,12,13,84,85,3612,_, 14.反证法证明“三角形中至少有一个角不少于60”先应假设这个三角形中_15.等腰三角形的一个外角是100,则这个等腰三角形的底角为_ 16.如图,一架5米长的梯子AB,斜靠在一堵竖直的墙AO上,这时梯顶A距地面4米,若梯子沿墙下滑1米,则梯足B外滑_米 17.如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有_m 18.如下图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm到D,则橡皮筋被拉长了_cm;三、解答题(共6题;共46分)19.如图,AB=AC,BD=DC,DFAB,DEAC,垂足分别是F,E求证:DE=DF 20.如图,ABC中BA=BC,点D是AB延长线上一点,DFAC于F交BC于E,求证:DBE是等腰三角形 21.求证:任意三角形的三个外角中至多有一个直角 22.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程: 将两个全等的直角三角形按图1所示摆放,其中DAB=90,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=baS四边形ADCB=SACD+SABC= 12 b2+ 12 ab又S四边形ADCB=SADB+SDCB= 12 c2+ 12 a(ba) 12 b2+ 12 ab= 12 c2+ 12 a(ba)a2+b2=c2请参照上述证法,利用图2完成下面的证明将两个全等的直角三角形按图2所示摆放,其中DAB=90求证:a2+b2=c2 23.已知:如图,四边形ABCD中,ABBC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积 24.如图是一块直角三角形的绿地,量得直角边BC为6cm,AC为8cm,现在要将原绿地扩充后成三角形,且扩充的部分是以AC为直角边的直角三角形,求扩充后的等腰三角形绿地的周长 答案解析一、单选题1、【答案】B 【考点】勾股定理的逆定理 【解析】【分析】分别把选项中的三边平方后,根据勾股定理逆定理即可判断能否构成直角三角形【解答】A、72+242=49+576=625,252=625,72+242=252 , 则7,24,25能构成直角三角形;B、72+122=49+144=293,152=225,72+122152 , 则7,12,15不能构成直角三角形;C、52+122=25+144=169,132=169,52+122=132 , 则5,12,13能构成直角三角形;D、32+42=9+16=25,52=25,32+42=52 , 则5,4,3能构成直角三角形故选B【点评】主要考查了利用勾股定理的逆定理判定直角三角形的方法在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断 2、【答案】C 【考点】含30度角的直角三角形 【解析】【分析】由题目可知,RtABC中,C=90, A=30,所以ABC=60,又BD是B的平分线,所以ABD=30,所以AD=BD。因为在RtBCD中,C=90,CBD=30,BDC=60,所以CD:BD=1:2,即CD:AD=1:2,又AC=18,所以BD=AD=12,故选C.【点评】通过直角三角形其中一个角为30,得出此角所对应直角边为斜边的一半,根据此定理来解答此类题目。 3、【答案】C 【考点】含30度角的直角三角形 【解析】【解答】解:如图1,点A是顶点时,AB=AC,ADBC,BD=CD,AD=12BC,AD=BD=CD,在RtABD中,B=BAD=12(18090)=45;如图2,点A是底角顶点,且AD在ABC外部时,AD=12BC,AC=BC,AD=12AC,ACD=30,BAC=ABC=1230=15;如图2,点A是底角顶点,且AD在ABC内部时,AD=12BC,AC=BC,AD=12AC,C=30,BAC=ABC=12(18030)=75;综上所述,ABC底角的度数为45或15或75故选C【分析】作出图形,分点A是顶点时,根据等腰三角形三线合一的性质可得BD=CD,从而得到AD=BD=CD,再利用等边对等角的性质可得B=BAD,然后利用直角三角形两锐角互余求解即可;点A是底角顶点时,根据直角三角形30角所对的直角边等于斜边的一半求出C=30,然后再根据等腰三角形两底角相等求解即可 4、【答案】D 【考点】反证法 【解析】【解答】解:用反证法证明:在一个三角形中,至少有一个内角小于或等于60,可以假设在一个三角形中,每个内角都大于60故选:D【分析】根据反证法的证明方法,先假设命题的结论不成立,即假设在一个三角形中,每个内角都大于60 5、【答案】D 【考点】反证法 【解析】【解答】解:反证法证明命题时,应假设命题的反面成立“a,b中至少有一个能被3整除”的反面是:“a,b都不能被3整除”,故应假设 a,b都不能被3整除故选 D【分析】“a,b中至少有一个能被3整除”的对立面是:“a,b都不能被3整除”,得到假设 6、【答案】D 【考点】反证法 【解析】【解答】解:a,b的大小关系有ab,ab,a=b三种情况,因而ab的反面是ab 因此用反证法证明“ab”时,应先假设ab故选D【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断;需注意的是ab的反面有多种情况,应一一否定 7、【答案】C 【考点】等腰三角形的判定 【解析】【解答】解:如上图:分情况讨论 AB为等腰ABC底边时,符合条件的C点有4个;AB为等腰ABC其中的一条腰时,符合条件的C点有4个故选:C【分析】根据题意,结合图形,分两种情况讨论:AB为等腰ABC底边;AB为等腰ABC其中的一条腰 8、【答案】B 【考点】等腰三角形的性质 【解析】【解答】解:AB=AC, B=C,AB=BD,BAD=BDA,CD=AD,C=CAD,BAD+CAD+B+C=180,5B=180,B=36故选:B【分析】求出BAD=2CAD=2B=2C的关系,利用三角形的内角和是180,求B, 9、【答案】B 【考点】等腰三角形的性质,勾股定理 【解析】【解答】解:过点A做ADBC于点D, 等腰三角形底边上的高为8,周长为32,AD=8,设DC=BD=x,则AB= (322x)=16x,AC2=AD2+DC2 , 即(16x)2=82+x2 , 解得:x=6,故BC=12,则ABC的面积为: ADBC= 812=48故选:B【分析】根据题意画出图形,进而利用勾股定理得出DC的长,进而求出BC的长,即可得出答案 10、【答案】A 【考点】勾股定理 【解析】【解答】解: 在RtABC中,ACB=90,AB= ,BC=2,AC= =3,这个直角三角形的面积= ACBC=3,故选A【分析】利用勾股定理易求AC的长,进而可求出这个直角三角形的面积 二、填空题11、【答案】4 【考点】等腰三角形的判定 【解析】【解答】解:AD是BAC的平分线,CAD=BAD,DEAC,CAD=ADE,ADE=BAD,AE=DE,BDAD,ADE+BDE=BAD+ABD=90,ABD=BDE,DE=BE,DE=12AB,AB=8,DE=128=4故答案为:4【分析】根据角平分线的定义可得CAD=BAD,再根据两直线平行,内错角相等可得CAD=ADE,然后求出ADE=BAD,根据等角对等边可得AE=DE,然后根据等角的余角相等求出ABD=BDE,根据等角对等边可得DE=BE,从而得到DE=12AB 12、【答案】27d 【考点】勾股定理 【解析】【解答】证明:OD=OC,O在CD的垂直平分线线上,ODC=OCD,四边形ABCD是矩形,AD=BC,ABC=ADC=BCD=90,ADCODC=BCDOCD,即ADO=BCO,在ADO和BCO中,ADOBCO(SAS),OA=OB,O在AB的垂直平分线上,过O作MNAB与N交CD于M,如图所示:则AN=BN,NMCD,OM=3d,ON=d,BC=MN=3d+d=4d,BN=AB=AN+BN=23d,AC=故答案为:27d【分析】由等腰三角形的性质求出OBC=OCB,由矩形的性质求出AD=BC,ABC=DCB=90,求出ABO=DCO,根据SAS推出ABODCO,得出OA=OB,过O作MNAB与N交CD于M,则AN=BN,NMCD,OM=3d,ON=d,由勾股定理求出BN,得出AB,再由勾股定理求出AC即可 13、【答案】3613 【考点】勾股数 【解析】【解答】解:第一组勾股数为:3、4、5,第二组勾股数为:5、12、13,第三组勾股数为:13、84、85,由第二组与第三组可以看出后两个数相差1,所以第四组为:85、3612、3613故答案为:3613【分析】根据勾股数排列的规律可以看出:第二组勾股数为:5、12、13,第三组为:13、84、85,后两个数相差1,所以第四组为:85、3612、3613 14、【答案】每个内角都小于60 【考点】反证法 【解析】【解答】解:用反证法证明三角形中至少有一个角不小于60,第一步应假设结论不成立,即三角形的三个内角都小于60故答案为:每个内角都小于60【分析】熟记反证法的步骤,从命题的反面出发假设出结论,直接填空即可 15、【答案】50或80 【考点】等腰三角形的性质 【解析】【解答】解:若100的外角是此等腰三角形的顶角的邻角, 则此顶角为:180100=80,则其底角为: 180802 =50;若100的外角是此等腰三角形的底角的邻角,则此底角为:180100=80;故这个等腰三角形的底角为:50或80故答案为:50或80【分析】由等腰三角形的一个外角是100,可分别从若100的外角是此等腰三角形的顶角的邻角与若100的外角是此等腰三角形的底角的邻角去分析求解,即可求得答案 16、【答案】1 【考点】勾股定理的应用 【解析】【解答】解:在RtABO中,根据勾股定理知,BO= AB2AO2 =3(m), 在RtCOD中,根据勾股定理知,DO= CD2CO2 =4(m),所以BD=DOBO=1(米)故答案为:1【分析】梯子的长是不变的,只要利用勾股定理解出梯子滑动前和滑动后的所构成的两直角三角形即可 17、【答案】4 【考点】勾股定理的应用 【解析】【解答】解:由图形及题意可知,AB2+BC2=AC2设旗杆顶部距离底部有x米,有32+x2=52 , 得x=4,故答案为4【分析】利用勾股定理,用一边表示另一边,代入数据即可得出结果 18、【答案】2 【考点】勾股定理 【解析】【解答】解:RtACD中,AC= AB=4cm,CD=3cm;根据勾股定理,得:AD=BD= =5cm;AD+BDAB=2ADAB=108=2cm;故橡皮筋被拉长了2cm【分析】根据勾股定理,可求出AD、BD的长,则AD+BDAB即为橡皮筋拉长的距离 三、解答题19、【答案】证明:AB=AC,B=C,DEAB,DFAC,BFD=CED=90,BD=DC,BDFCDE,DE=DF 【考点】等腰三角形的性质 【解析】【分析】要证DE=DF,只需证BDFCDE,已知AB=AC,可得B=C,又已知BD=DC,BFD=CED=90,则两三角形全等可证 20、【答案】证明:在ABC中,BA=BC,BA=BC,A=C,DFAC,C+FEC=90,A+D=90,FEC=D,FEC=BED,BED=D,BD=BE,即DBE是等腰三角形 【考点】等腰三角形的判定 【解析】【分析】首先根据等腰三角形的两个底角相等得到A=C,再根据等角的余角相等得FEC=D,同时结合对顶角相等即可证明DBE是等腰三角形 21、【答案】证明:假设任意三角形的三个外角中有2个直角,因为两个外角为直角,则相邻两个内角也为90,再加上一个角一定大于180,与三角形内角和为180矛盾,所以任意三角形的三个外角中至多有一个直角 【考点】反证法 【解析】【分析】用反证法进行证明;先设任意三角形的三个外角中有2个直角,然后得出假设与三角形内角和定理相矛盾,从而证得原结论成立 22、【答案】证明:连结BD,过点B作DE边上的高BF,则BF=ba, S五边形ACBED=SACB+SABE+SADE= ab+ b2+ ab,又S五边形ACBED=SACB+SABD+SBDE= ab+ c2+ a(ba), ab+ b2+ ab= ab+ c2+ a(ba),a2+b2=c2 【考点】勾股定理的证明 【解析】【分析】首先连结BD,过点B作DE边上的高BF,则BF=ba,表示出S五边形ACBED , 两者相等,整理即可得证 23、【答案】解:连接AC ABC=90,AB=1,BC=2,AC= = ,在ACD中,AC2+CD2=5+4=9=AD2 , ACD是直角三角形,S四边形ABCD= ABBC+ ACCD,= 12+ 2,=1+ 故四边形ABCD的面积为1+ 【考点】勾股定理,勾股定理的逆定理 【解析】【分析】先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出ACD的形状,再利用三角形的面积公式求解即可 24、【答案】解:在RtABC中,ACB=90,AC=8m,BC=6m, 由勾股定理有:AB=10m,应分以下三种情况:如图1,当AB=AD=10m时,ACBD,CD=CB=6m,ABD的周长=10+10+26=32(m)如图2,当AB=BD=10m时,BC=6m,CD=106=4m,AD= = =4 (m),ABD的周长=10+10+4 =(20+4 )m如图3,当AB为底时,设AD=BD=x,则CD=x6,由勾股定理得:AD2=AC2+CD2=82+(x6)2=x2 , 解得x= ABD的周长为:AD+BD+AB= + +10= (m)综上所述,扩充后的等腰三角形绿地的周长为:32m或(20+4 )m或 m 【考点】等腰三角形的判定,勾股定理的应用 【解析】【分析】根据题意画出图形,构造出等腰三角形,根据等腰三角形及直角三角形的性质利用勾股定理解答 最新精选优质数学资料
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 成人自考


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!