资源描述
三年高考(2014-2016)数学(理)试题分项版解析第二章 函数一、选择题1. 【2014课标,理3】设函数的定义域为,且是奇函数,是偶函数,则下列结论中正确的是( )A是偶函数 B 是奇函数 C. 是奇函数 D是奇函数【答案】C【解析】设,则,因为是奇函数,是偶函数,故,即是奇函数,选C【名师点睛】本题主要考查了函数的奇偶性,在研究函数的奇偶性时,一定要注意的奇偶性,只有具备奇偶性,函数才是偶函数,否者不成立.2. 【2014课标,理11】已知函数,若存在唯一的零点,且,则的取值范围是( )A B C D【答案】C【名师点睛】本题主要考查了函数的奇偶性,在研究函数的奇偶性时,一定要注意的奇偶性,只有具备奇偶性,函数才是偶函数,否者不成立.【名师点睛】本题主要是考查函数的零点、导数在函数性质中的运用和分类讨论思想的运用,在研究函数的性质时要结合函数的单调性、奇偶性、零点、以及极值等函数的特征去研究,本题考查了考生的数形结合能力.3. 【2016高考新课标3理数】已知,则( )(A) (B) (C) (D)【答案】A【解析】试题分析:因为,所以,故选A考点:幂函数的图象与性质【技巧点拨】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决4. 【2016年高考北京理数】已知,且,则( )A. B. C.D.【答案】C考点: 函数性质【名师点睛】函数单调性的判断:(1)常用的方法有:定义法、导数法、图象法及复合函数法(2)两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数;(3)奇函数在关于原点对称的两个区间上有相同的单调性,偶函数在关于原点对称的两个区间上有相反的单调性.5. 【2014高考北京理第2题】下列函数中,在区间上为增函数的是( )A B C D【答案】A【解析】试题分析:对A,函数在上为增函数,符合要求;对B,在上为减函数,不符合题意;对C,为上的减函数,不符合题意;对D,在上为减函数,不符合题意.故选A.考点:函数的单调性,容易题.名师点睛:本题考查函数的性质,本题属于基础题,函数的性质涉及奇偶性、单调性、周期性,零点等,近几年高考函数性质问题是选填必考题,有时考单一性质,有时涉及两个或两个以上性质综合考查,题目新颖但注重基础,有时与图像、零点等结合考查,有时与方程、不等式结合考查,题目新鲜但有一点难度.6. 【2015高考北京,理7】如图,函数的图象为折线,则不等式的解集是( )A BC D【答案】C【解析】如图所示,把函数的图象向左平移一个单位得到的图象时两图象相交,不等式的解为,用集合表示解集选C【考点定位】本题考查作基本函数图象和函数图象变换及利用函数图象解不等式等有关知识,体现了数形结合思想.【名师点睛】本题考查作基本函数图象和函数图象变换及利用函数图象解不等式等有关知识,本题属于基础题,首先是函数图象平移变换,把沿轴向左平移2个单位,得到的图象,要求正确画出画出图象,利用数形结合写出不等式的解集.7. 【2016高考新课标1卷】函数在的图像大致为(A)(B)(C)(D)【答案】D考点:函数图像与性质【名师点睛】函数中的识图题多次出现在高考试题中,也可以说是高考的热点问题,这类题目一般比较灵活,对解题能力要求较高,故也是高考中的难点,解决这类问题的方法一般是利用间接法,即由函数性质排除不符合条件的选项.8. 【2015高考广东,理3】下列函数中,既不是奇函数,也不是偶函数的是( ) A B C D【答案】【解析】记,则,那么,所以既不是奇函数也不是偶函数,依题可知、依次是奇函数、偶函数、偶函数,故选【考点定位】函数的奇偶性判断【名师点睛】本题主要考查函数的奇偶性判断和常见函数性质问题,但既不是奇函数,也不是偶函数的判断可能较不熟悉,容易无从下手,因此可从熟悉的奇偶性函数进行判断排除,依题易知、是奇偶函数,排除得出答案,属于容易题9. 【 2014湖南3】已知分别是定义在上的偶函数和奇函数,且,则( )A. B. C. 1 D. 3【答案】C【考点定位】奇偶性【名师点睛】本题主要考查了函数的奇偶性及其应用,解决问题的关键是根据定义进行分析计算即可;函数奇偶性判断的方法:定义法:函数定义域是否关于原点对称,对应法则是否相同;图像法:f(x)为奇函数f(x)的图像关于原点对称 点(x,y)(-x,-y) f(x)为偶函数f(x)的图像关于Y轴对称 点(x,y)(-x,y);特值法:根据函数奇偶性定义,在定义域内取特殊值自变量,计算后根据因变量的关系判断函数奇偶性;性质法:利用一些已知函数的奇偶性及以下准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和(差)是奇函数;两个偶函数的和(差)是偶函数;奇函数与偶函数的和(差)既非奇函数也非偶函数;两个奇函数的积(商)为偶函数;两个偶函数的积(商)为偶函数;奇函数与偶函数的积(商)是奇函数.10. 【2016高考新课标2理数】已知函数满足,若函数与图像的交点为则( )(A)0 (B) (C) (D)【答案】C【解析】试题分析:由于,不妨设,与函数的交点为,故,故选C.考点: 函数图象的性质【名师点睛】如果函数,满足,恒有,那么函数的图象有对称轴;如果函数,满足,恒有,那么函数的图象有对称中心.11. 【 2014湖南8】某市生产总值连续两年持续增加.第一年的增长率为,第二年的增长率为,则该市这两年生产总值的年平均增长率为( ) A. B. C. D.【答案】D【解析】设两年的平均增长率为,则有,故选D.【考点定位】实际应用题 二次方程【名师点睛】本题主要考查了函数模型的应用,解决问题的关键是根据所给实际问题进行分析找到对应的函数模型,然后利用对应的函数性质进行具体分析计算即可.12. 【 2014湖南10】已知函数与图象上存在关于轴对称的点,则的取值范围是( )A. B. C. D. 【答案】B【解析】由题可得存在满足,令,因为函数和在定义域内都是单调递增的,所以函数在定义域内是单调递增的,又因为趋近于时,函数且在上有解(即函数有零点),所以,故选B.【考点定位】指对数函数 方程 单调性【名师点睛】本题主要考查了函数的零点判定,解决问题的关键是根据存在关于y轴对称的点则函数f(x)与g(x)必然存在交点,所以构造函数h(x)=f(x)-g(x)在必然存在零点,根据函数单调性不难得到只需h(0)0即可,然后求解得到a的范围.13. 【2014山东.理3】 函数的定义域为( )A. B. C. D. 【答案】【解析】由已知得即或,解得或,故选.考点:函数的定义域,对数函数的性质.【名师点睛】本题考查函数的概念、函数的定义域.解答本题关键是利用求函数定义域的基本方法,建立不等式组求解.本题属于基础题,注意基本概念的正确理解以及计算的准确性.14. 【2016高考山东理数】已知函数f(x)的定义域为R.当x0,且a1)在R上单调递减,且关于x的方程恰好有两个不相等的实数解,则a的取值范围是( )(A)(0, (B), (C),(D),)【答案】C【解析】试题分析:由在上递减可知,由方程恰好有两个不相等的实数解,可知,又时,抛物线与直线相切,也符合题意,实数的去范围是,故选C.考点:函数性质综合应用【名师点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解16. 【2014山东.理5】 已知实数满足,则下列关系式恒成立的是( )A. B. C. D.【答案】【解析】由知,所以,正确.通过举反例可以说明其它选项均不正确.对于,取此时,不成立;对于,取此时,不成立;对于,取此时,不成立;故选【名师点睛】本题考查指数函数、对数函数、正弦函数及幂函数的单调性.比较函数值大小问题,往往结合函数的单调性,通过引入“-1,0,1”等作为“媒介”.本题属于基础题,注意牢记常见初等函数的性质并灵活运用.17. 【2014山东.理8】已知函数若方程有两个不相等的实根,则实数的取值范围是( )A. B. C. D.【答案】【解析】由已知,函数的图象有两个公共点,画图可知当直线介于之间时,符合题意,故选.【名师点睛】本题考查函数与方程、函数的图象.此类问题的基本解法是数形结合法,即通过画出函数的图象,观察交点情况。得出结论.本题属于基础题,也是常见题目,在考查函数与方程、函数的图象等基础知识的同时,考查数形结合思想、转化与化归思想.18. 【2015高考山东,理10】设函数则满足的取值范围是( )(A) (B) (C) (D) 【答案】C【考点定位】1、分段函数;2、指数函数.【名师点睛】本题以分段函数为切入点,深入考查了学生对函数概念的理解与掌握,同时也考查了学生对指数函数性质的理解与运用,渗透着对不等式的考查,是一个多知识点的综合题.19.【2014高考陕西版理第7题】下列函数中,满足“”的单调递增函数是( )(A) (B) (C)(D)【答案】【解析】试题分析:选项:由,得,所以错误;选项:由,得,所以错误;选项:函数是定义在上减函数,所以错误;选项:由,得;又函数是定义在上增函数,所以正确;故选.考点:函数求值;函数的单调性.【名师点晴】本题主要考查的是函数求值;函数的单调性等知识,属于容易题;在解本题时可以首先由单调性排除B,C选项, 再验证A,D选项是否满足“”即可.在解答时对于正确选项要说明理由,对于错误选项则只要举出反例即可,20. 【2015高考新课标2,理5】设函数,( )A3 B6 C9 D12【答案】C【解析】由已知得,又,所以,故,故选C【考点定位】分段函数【名师点睛】本题考查分段函数求值,要明确自变量属于哪个区间以及熟练掌握对数运算法则,属于基础题21. 【2015高考新课标2,理10】如图,长方形的边,是的中点,点沿着边,与运动,记将动到、两点距离之和表示为的函数,则的图像大致为( )DPCB OAx【答案】B【考点定位】函数的图象和性质【名师点睛】本题考查函数的图像与性质,表面看觉得很难,但是如果认真审题,读懂题意,通过点P的运动轨迹来判断图像的对称性以及特殊点函数值的比较,也可较容易找到答案,属于中档题22. 【2014四川,理9】已知,.现有下列命题:;.其中的所有正确命题的序号是( )A B C D 【答案】A【解析】法二、根据图象的对称性,可只考虑的情况. 时,则,所以,所以成立.标准答案选A,笔者认为有错,应该选C. 题干中的应理解为函数的定义域,而不是后面三个命题中的范围,因为在它的前面是逗号.如果前是句号,则选A.【考点定位】1、函数的奇偶性;2、对数运算;3、函数与不等式.【名师点睛】函数的奇偶性判定,除了要掌握奇偶性定义外,还要深刻理解其定义域特征即定义域关于原点对称,否则即使满足定义,但是不具有奇偶性;不等式问题通常转化为函数的最值问题.23. 【2014年.浙江卷.理6】已知函数( )A. B. C. D. 答案: 解析:由得,解得,所以,由,得,即,故选考点:求函数解析式,解不等式.【名师点睛】不同主要考查了待定系数法求函数解析式,解决问题的关键是根据所给条件联立得到方程组求解参数,根据函数值的范围求解参数范围;求函数解析式常用的方法:(1)配凑法:由已知条件f(g(x)F(x),可将F(x)改写成关于g(x)的表达式,然后以x替代g(x),便得f(x)的表达式;(2)换元法:已知复合函数f(g(x)的解析式,可用换元法,此时要注意新元的取值范围;(3)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法;(4)消去法:已知关于f(x)与f()或f(x)的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f(x)24.【2014年.浙江卷.理7】在同意直角坐标系中,函数的图像可能是( )答案:解析:函数,与,答案没有幂函数图像,答案中,中,不符合,答案中,中,不符合,答案中,中,符合,故选考点:函数图像.【名师点睛】本题主要考查了函数的指数与对数函数图像和性质,属于常见题目,难度不大;识图常用的方法:(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题25. 【2015高考浙江,理7】存在函数满足,对任意都有( )A. B. C. D. 【答案】D.【考点定位】函数的概念【名师点睛】本题主要考查了函数的概念,以及全称量词与存在量词的意义,属于较难题,全称量词与存在量词是考试说明新增的内容,在后续复习时应予以关注,同时,“存在”,“任意”等一些抽象的用词是高等数学中经常会涉及的,也体现了从高中数学到大学高等数学的过渡,解题过程中需对函数概念的本质理解到位,同时也考查了举反例的数学思想.26. 【2014年.浙江卷.理10】设函数,记,则( )A. B. C. D. 答案:B解析:由,故,由,故,=1,故,故选B考点:比较大小.【名师点睛】本题主要考查了函数值大小的比较,解决问题的关键是根据所给函数定义计算对应的 的范围,然后比较大小即可;比较两个数(式)大小的两种方法:(1)比较大小时,要把各种可能的情况都考虑进去,对不确定的因素需进行分类讨论,每一步运算都要准确,每一步推理都要有充分的依据(2)用作商法比较代数式的大小一般适用于分式、指数式、对数式,作商只是思路,关键是化简变形,从而使结果能够与1比较大小27 【2014,安徽理6】设函数满足当时,则 ( ) A B C0 D【答案】A【解析】试题分析:由题意,故选A考点:1函数的求值【名师点睛】对于函数求值类问题,需要判断所需求的某个量的函数值是否能满足给定解析式,若不能满足,需要通过一定的化简代入进去,这类问题通常喜欢考周期类、分段函数类和类似数列类,像此题就是类似数列类,通过迭代法即可解决.28 【2014,安徽理9】若函数的最小值为3,则实数的值为 ( ) A5或8 B或5 C或 D或8【答案】D【解析】试题分析:由题意,当时,即,则当时,解得或(舍);当时,即,则当时,解得(舍)或;当时,即,此时,不满足题意,所以或,故选D考点:函数的最值【名师点睛】对于含绝对值的不等式或函数问题,首先要考虑的是根据绝对值的意义去绝对值.常用的去绝对值方法是零点分段法,特别是用于多个绝对值的和或差的问题,另外,利用绝对值的几何意义解题会加快做题速度.本题还可以利用绝对值的几何意义进行求解.29. 【2015高考安徽,理2】下列函数中,既是偶函数又存在零点的是( ) (A) (B) (C) (D)【答案】A【解析】由选项可知,项均不是偶函数,故排除,项是偶函数,但项与轴没有交点,即项的函数不存在零点,故选A.【考点定位】1.函数的奇偶性;2.函数零点的概念.【名师点睛】函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数有零点函数在轴有交点方程有根函数与有交点.30. 【2015高考安徽,理9】函数的图象如图所示,则下列结论成立的是( ) (A), (B), (C), (D),【答案】C【考点定位】1.函数的图象与应用.【名师点睛】函数图象的分析判断主要依据两点:一是根据函数的性质,如函数的奇偶性、单调性、值域、定义域等;二是根据特殊点的函数值,采用排除的方法得出正确的选项.本题主要是通过函数解析式判断其定义域,并在图形中判断出来,另外,根据特殊点的位置能够判断的正负关系.31. 【2014天津,理4】函数的单调递增区间是() (A) (B) (C) (D)【答案】D【解析】试题分析:函数的定义域为,由于外层函数为减函数,由复合函数的单调性可知,只要求的单调递减区间,结合函数的定义域,得单调递增区间为,故选D考点:复合函数的单调性(单调区间)【名师点睛】本题考查复合函数的单调性有关知识,本题属于基础题,复合函数单调性问题遵循“同增异减”法则,函数在上为增函数,函数在上为减函数,因此函数的单调递减区间是值得注意的是,研究函数的单调性问题,务必注意函数的定义域.32. 【2015高考天津,理7】已知定义在 上的函数 (为实数)为偶函数,记 ,则 的大小关系为( )(A) (B) (C) (D) 【答案】C【考点定位】1.函数奇偶性;2.指数式、对数式的运算.【名师点睛】本题主要考查函数的奇偶性与指数、对数的运算问题,先由函数奇偶性知识求出的值,计算出相应的的值比较大小即可,是中档题. 其中计算的值时易错.33. 【2015高考天津,理8】已知函数 函数 ,其中,若函数 恰有4个零点,则的取值范围是( )(A) (B) (C) (D)【答案】D【解析】由得,所以,即,所以恰有4个零点等价于方程有4个不同的解,即函数与函数的图象的4个公共点,由图象可知.【考点定位】求函数解析、函数与方程思、数形结合.【名师点睛】本题主要考查求函数解析、函数与方程思、数形结合思想以及学生的作图能力.将求函数解析式、函数零点、方程的解等知识结合在一起,利用等价转换、数形结合思想等方法,体现数学思想与方法,考查学生的运算能力、动手作图能力以及观察能力.是提高题.34. 【2014湖北卷10】已知函数是定义在上的奇函数,当时,若,则实数的取值范围为( )A. B. C. D. 【答案】B【解析】试题分析:当时,由是奇函数,可作出的图像,如下图所示.又因为,所以的图像恒在图像的下方,即将的图像往右平移一个单位后恒在图像的下方,所以,解得.故选B.考点:函数的奇函数的性质、分段函数、最值及恒成立,难度中等.【名师点睛】将含绝对值的函数、函数的奇偶性、分段函数和不等式等内容联系在一起,凸显了知识之间的联系性、综合性,体现了函数思想、转化与化归的数学思想在函数问题中的应用,能较好的考查学生的作图能力和综合能力.其解题的关键是正确地画出分段函数的图像并通过函数图像建立不等关系.35. 【2015高考湖北,理6】已知符号函数 是上的增函数,则( ) A B C D【答案】B【考点定位】符号函数,函数的单调性.【名师点睛】构造法数求解高中数学问题常用方法,在选择题、填空题及解答题中都用到,特别是求解在选择题、填空题构造恰当的函数,根据已知能快捷的得到答案.36. 【2014上海,理18】若是的最小值,则的取值范围为( ). (A)-1,2 (B)-1,0 (C)1,2 (D) 【答案】D【解析】由于当时,在时取得最小值,由题意当时,应该是递减的,则,此时最小值为,因此,解得,选D【考点】分段函数的单调性与最值问题【名师点睛】(1)根据分段函数解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解(2)已知函数值或函数值范围求自变量的值或范围应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围37. 【2014福建,理4】若函数的图像如右图所示,则下列函数图像正确的是( )【答案】B【解析】试题分析:由题意可得.所以函数是递减的即A选项不正确.B正确. 是递减,所以C不正确. 图象与关于y轴对称,所以D不正确.故选B.考点:函数的图象.【名师点睛】本题主要考查函数图像的识别问题及分析问题解决问题的能力,求解此题首先要根据图像经过的特殊点,确定参数的值,然后利用函数的单调性确定正确选项,解决此类问题要重视特殊点及单调性的应用.38. 【2014福建,理7】已知函数则下列结论正确的是( )A. 是偶函数 B. 是增函数 C.是周期函数 D.的值域为【答案】D考点:1.分段函数.2.函数的性质.【名师点睛】本题以分段函数为载体,综合考查函数的性质及简单的运算能力,分段函数问题一直是高考中的热点问题,解决分段函数有关问题的关键在于“对号入座”,即根据分段函数中自变量取值范围的界定,代入相应的解析式.39.【2015高考福建,理2】下列函数为奇函数的是( )A B C D 【答案】D【解析】函数是非奇非偶函数;和是偶函数;是奇函数,故选D【考点定位】函数的奇偶性【名师点睛】本题考查函数的奇偶性,除了要掌握奇偶性定义外,还要深刻理解其定义域特征即定义域关于原点对称,否则即使满足定义,但是不具有奇偶性,属于基础题40. 【2014辽宁理3】已知,则( )A B C D【答案】C【解析】试题分析:所以,故选C.考点:1.指数对数化简;2.不等式大小比较. 【名师点睛】本题考查指数函数、对数函数的性质,比较函数值大小问题,往往结合函数的单调性,通过引入“-1,0,1”等作为“媒介”.本题属于基础题,注意牢记常见初等函数的性质并灵活运用.41. 【2014辽宁理12】已知定义在上的函数满足:;对所有,且,有.若对所有,则k的最小值为( )A B C D【答案】B【解析】试题分析:不妨令,则法一:,即得, 另一方面,当时,符合题意,当时,故法二:当时, ,当时,故考点:1.抽象函数问题;2.绝对值不等式. 【名师点睛】本题考查抽象函数问题、绝对值不等式、函数的最值等.解答本题的关键,是利用分类讨论思想、转化与化归思想,逐步转化成不含绝对值的式子,得出结论.本题属于能力题,中等难度.在考查抽象函数问题、绝对值不等式、函数的最值等基础知识的同时,考查了考生的逻辑推理能力、运算能力、分类讨论思想及转化与化归思想.42. 【2015湖南理2】设函数,则是( )A.奇函数,且在上是增函数 B. 奇函数,且在上是减函数C. 偶函数,且在上是增函数 D. 偶函数,且在上是减函数【答案】A.【考点定位】函数的性质.【名师点睛】本题主要考查了以对数函数为背景的单调性与奇偶性,属于中档题,首先根据函数奇偶性的判定可知其为奇函数,判定时需首先考虑定义域关于原点对称是函数为奇函数的必要条件,再结合复合函数单调性的判断,即可求解.二、填空题1. .【2016年高考四川理数】已知函数是定义在R上的周期为2的奇函数,当0x1时,则= .【答案】-2【解析】考点:函数的奇偶性和周期性.【名师点睛】本题考查函数的奇偶性,周期性,属于基本题,在求值时,只要把和,利用奇偶性与周期性化为上的函数值即可2. 【2015高考新课标1,理13】若函数f(x)=为偶函数,则a= 【答案】1【解析】由题知是奇函数,所以 =,解得=1.【考点定位】函数的奇偶性【名师点睛】本题主要考查已知函数奇偶性求参数值问题,常用特值法,如函数是奇函数,在x=0处有意义,常用f(x)=0,求参数,否则用其他特值,利用特值法可以减少运算.3. 【2015高考北京,理14】设函数若,则的最小值为;若恰有2个零点,则实数的取值范围是【答案】(1)1,(2)或.【解析】时,函数在上为增函数,函数值大于1,在为减函数,在为增函数,当时,取得最小值为1;(2)若函数在时与轴有一个交点,则,并且当时,则,函数与轴有一个交点,所以;若函数与轴有无交点,则函数与轴有两个交点,当时与轴有无交点,在与轴有无交点,不合题意;当时,与轴有两个交点,和,由于,两交点横坐标均满足;综上所述的取值范围或.考点定位:本题考点为函数的有关性质,涉及函数图象、函数的最值,函数的零点、分类讨论思想解【名师点睛】本题考查函数图象与函数零点的有关知识,本题属于中等题,第一步正确画出图象,利用函数图象研究函数的单调性,求出函数的最值,第二步涉计参数问题,针对参数进行分类讨论,按照题目所给零点的条件,找出符合零点要求的参数,讨论要全面,注意数形结合4. 【2016高考浙江理数】已知ab1.若logab+logba=,ab=ba,则a= ,b= .【答案】 【解析】试题分析:设,因为,因此考点:1、指数运算;2、对数运算【易错点睛】在解方程时,要注意,若没注意到,方程的根有两个,由于增根导致错误5. 【2014江苏,理10】已知函数,若对于任意的都有,则实数的取值范围为 .【答案】【解析】据题意解得【名师点晴】研究函数三个思想1. 等价转换思想:将不等式恒成立,有解问题等价转化为对应函数最值问题2. 数形结合思想:利用函数图像,研究函数性质3. 函数与方程思想:将方程是否有解及实根分布转化为对应函数性质与图像问题6. 【2016高考天津理数】已知f(x)是定义在R上的偶函数,且在区间(-,0)上单调递增.若实数a足,则a的取值范围是_.【答案】考点:利用函数性质解不等式【名师点睛】不等式中的数形结合问题,在解题时既要想形又要以形助数,常见的“以形助数”的方法有:(1)借助数轴,运用数轴的有关概念,解决与绝对值有关的问题,解决数集的交、并、补运算非常有效(2)借助函数图象性质,利用函数图象分析问题和解决问题是数形结合的基本方法,需注意的问题是准确把握代数式的几何意义实现“数”向“形”的转化7. 【2014江苏,理13】已知是定义在上且周期为3的函数,当时,若函数在区间上有10个零点(互不相同),则实数的取值范围是 .【答案】【解析】作出函数的图象,可见,当时,方程在上有10个零点,即函数和图象与直线在上有10个交点,由于函数的周期为3,因此直线与函数的应该是4个交点,则有【名师点晴】研究函数性质时一般要借助于函数图像,体现了数形结合思想;方程解的问题常转化为两熟悉的函数图像的交点个数问题来解决图像的应用常见的命题角度有:(1)确定方程根的个数;(2)求参数的取值范围; (3)求不等式的解集.8. 【2015高考江苏,13】已知函数,则方程实根的个数为 【答案】4【考点定位】函数与方程【名师点晴】一些对数型方程不能直接求出其零点,常通过平移、对称变换转化为相应的函数图像问题,利用数形结合法将方程根的个数转化为对应函数零点个数,而函数零点个数的判断通常转化为两函数图像交点的个数这时函数图像是解题关键,不仅要研究其走势(单调性,极值点、渐近线等),而且要明确其变化速度快慢.9.【2014山东.理15】已知函数,对函数,定义关于的对称函数为函数,满足:对于任意,两个点关于点对称,若是关于的“对称函数”,且恒成立,则实数的取值范围是_.【答案】【解析】由“对称函数”的定义及中点坐标公式得所以,恒成立即恒成立,亦即直线位于半圆的上方.在同一坐标系内,画出直线及半圆(如图所示),当直线与半圆相切时,解得,故答案为【名师点睛】本题考查阅读理解能力、学习能力、运算能力、直线与圆的位置关系.解答本题的关键,是理解新定义运算,将问题转化成恒成立,利用数形结合思想,再将问题转化成直线与圆的位置关系问题.本题属于新定义问题,是一道创新能力题,中等难度之上.在考查阅读理解能力、学习能力、运算能力、直线与圆的位置关系等的同时,考查转化与化归思想及数形结合思想.10. 【2014高考陕西版理第11题】已知则=_.【答案】【解析】试题分析:由得,所以,解得,故答案为.考点:指数方程;对数方程.【名师点晴】本题主要考查的是指数方程和对数方程,属于容易题;在解答时正确理解指数式和对数式的意义有助于正确完成此题.11. 【2014新课标,理15】已知偶函数在单调递减,.若,则的取值范围是_.【答案】【名师点睛】本题考查了函数的奇偶性,函数图象的对称性,属于中档题目,根据函数图象的对称性及奇偶性,将已知不等式转化为普通不等式来解.12. 【2015高考四川,理13】某食品的保鲜时间y(单位:小时)与储存温度x(单位:)满足函数关系(为自然对数的底数,k、b为常数)。若该食品在0的保鲜时间设计192小时,在22的保鲜时间是48小时,则该食品在33的保鲜时间是 小时.【答案】24【解析】由题意得:,所以时,.【考点定位】函数及其应用.【名师点睛】这是一个函数应用题,利用条件可求出参数k、b,但在实际应用中往往是利用整体代换求解(不要总是想把参数求出来).本题利用整体代换,使问题大大简化.13. 【2014四川,理12】设是定义在R上的周期为2的函数,当时,则 .【答案】1【解析】试题分析:.【考点定位】周期函数及分段函数.【名师点睛】本题考查函数的周期性和分段函数求值,首先利用周期性把横坐标转化到分段函数的定义域范围,即可求值.14. 【2016年高考四川理数】在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为;当P是原点时,定义P的“伴随点”为它自身,平面曲线C上所有点的“伴随点”所构成的曲线定义为曲线C的“伴随曲线”.现有下列命题:若点A的“伴随点”是点,则点的“伴随点”是点A单位圆的“伴随曲线”是它自身;若曲线C关于x轴对称,则其“伴随曲线”关于y轴对称;一条直线的“伴随曲线”是一条直线.其中的真命题是_(写出所有真命题的序列).【答案】【解析】考点:对新定义的理解、函数的对称性.【名师点睛】本题考查新定义问题,属于创新题,符合新高考的走向它考查学生的阅读理解能力,接受新思维的能力,考查学生分析问题与解决问题的能力,新定义的概念实质上只是一个载体,解决新问题时,只要通过这个载体把问题转化为我们已经熟悉的知识即可本题新概念“伴随”实质是一个变换,一个坐标变换,只要根据这个变换得出新的点的坐标,然后判断,问题就得以解决15. 【2015高考浙江,理10】已知函数,则 ,的最小值是 【答案】,.【解析】,当时,当且仅当时,等号成立,当时,当且仅当时,等号成立,故最小值为.【考点定位】分段函数【名师点睛】本题主要考查分段函数以及求函数的最值,属于容易题,在求最小值时,可以求每个分段上的最小值,再取两个最小值之中较小的一个即可,在求最小值时,要注意等号成立的条件,是否在其分段上,分段函数常与数形结合,分类讨论等数学思想相结合,在复习时应予以关注.16. 【2015高考浙江,理12】若,则 【答案】.【解析】,.【考点定位】对数的计算【名师点睛】本题主要考查对数的计算,属于容易题,根据条件中的对数式将其等价转化为指数式,变形即可求解,对数是一个相对抽象的概念,在解题时可以转化为相对具体的指数式,利用指数的运算性质求解.17. 【2014年.浙江卷.理15】设函数若,则实数的取值范围是_答案:解析:由题意,或,解得,当或,解得,解得考点:分段函数,求范围.【名师点睛】本题主要考查了分段函数的图像与性质,解决问题的关键是根据所求不等式的性质建立不等式组求解即可;分段函数“两种”题型的求解策略:(1)根据分段函数解析式求函数值,首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解(2)已知函数值或函数值范围求自变量的值或范围应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围当分段函数的自变量范围不确定时,应分类讨论18. 【2014高考重庆理第12题】函数的最小值为_.【答案】考点:1、对数的运算;2、二次函数的最值.【名师点睛】本题考查了对数运算,二次函数,换元法,配方法求最值,本题属于基础题,注意函数的定义域.19. 【2014高考重庆理第16题】若不等式对任意实数恒成立,则实数的取值范围是_.【答案】【解析】试题分析:令,其图象如下所示(图中的实线部分)由图可知:,由题意得:,解这得:所以答案应填:.考点:1、分段函数;2、等价转换的思想;3、数形结合的思想.【名师点睛】本题考查了绝对值不等式,绝对值的性质,分段函数的图象,数形结合法,不等式的恒成立,属于基础题20. 【2015高考安徽,理15】设,其中均为实数,下列条件中,使得该三次方程仅有一个实根的是 .(写出所有正确条件的编号) ;.【答案】【考点定位】1函数零点与方程的根之间的关系;2.函数的单调性及其极值.【名师点睛】高考中若出现方程问题,通常情况下一定要考虑其对应的函数,了解函数的大致图象特征,便于去分析方程;若出现的是高次函数或非基本初等函数,要利用导数这一工具进行分析其单调性、极值与最值;函数零点问题考查时,要经常性使用零点存在性定理.21. 【2014天津,理14】已知函数,若方程恰有4个互异的实数根,则实数的取值范围为_【答案】【解析】试题分析:(方法一)在同一坐标系中画和的图象(如图),问题转化为与图象恰有四个交点当与(或与)相切时,与图象恰有三个交点把代入,得,即,由,得,解得或又当时,与仅两个交点,或(方法二)显然,令,则,结合图象可得或考点:方程的根与函数的零点【名师点睛】本题考查函数图象与函数零点的有关知识,本题属于中等题,第一步正确画出图象,第二步涉计参数问题,针对参数进行分类讨论,按照题目所给条件要求,两函数图象有四个交点,找出符合零点要求的参数,讨论要全面,注意数形结合22. 【2014上海,理12】设常数a使方程在闭区间0,2上恰有三个解,则 . 【答案】【考点】解三角方程,方程的解与函数图象的交点【名师点睛】研究三角函数的性质,一般通过变换把函数化为yAsin(x)的形式再研究性质,解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题解三角方程,关键在于确定定义区间,这可结合三角函数图像给予确定.23. 【2014上海,理4】设若,则的取值范围为_.【答案】【解析】由题意,若,则不合题意,因此,此时时,满足.【考点】分段函数.【名师点睛】(1)根据分段函数解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解(2)已知函数值或函数值范围求自变量的值或范围应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围24. 【2014上海,理9】若,则满足的取值范围是 .【答案】【解析】根据幂函数的性质,由于,所以当时,当时,因此的解集为.【考点】幂函数的性质.【名师点睛】1幂函数yx的图像与性质由于的值不同而比较复杂,一般从两个方面考查:(1)的正负:0时,图像过原点和(1,1),在第一象限的图像上升;1时,曲线下凸;01时,曲线上凸;0时,曲线下凸2在比较幂值的大小时,必须结合幂值的特点,选择适当的函数借助其单调性进行比较,准确掌握各个幂函数的图像和性质是解题的关键25. 【2016高考江苏卷】设是定义在上且周期为2的函数,在区间上, 其中 若 ,则的值是 .【答案】【解析】,因此考点:分段函数,周期性质【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么.函数周期性质可以将未知区间上的自变量转化到已知区间上.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处函数值.26. 【2016高考江苏卷】函数y=的定义域是 .【答案】【解析】试题分析:要使函数有意义,必须,即,故答案应填:,考点:函数定义域【名师点睛】函数定义域的考查,一般是多知识点综合考查,先列,后解是常规思路.列式主要从分母不为零、偶次根式下被开方数非负、对数中真数大于零等出发,而解则与一元二次不等式、指对数不等式、三角不等式联系在一起.27. 【2016年高考北京理数】设函数.若,则的最大值为_;若无最大值,则实数的取值范围是_.【答案】,.【解析】考点:1.分段函数求最值;2.数形结合的数学思想.【名师点睛】1.分段函数的函数值时,应首先确定所给自变量的取值属于哪一个范围,然后选取相应的对应关系若自变量值为较大的正整数,一般可考虑先求函数的周期若给出函数值求自变量值,应根据每一段函数的解析式分别求解,但要注意检验所求自变量的值是否属于相应段自变量的范围;2.在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知的函数的单调性,因此掌握一次函数、二次函数、幂函数、对数函数等的单调性,将大大缩短我们的判断过程28.【2015高考福建,理14】若函数 ( 且 )的值域是 ,则实数 的取值范围是 【答案】【考点定位】分段函数求值域【名师点睛】本题考查分段函数的值域问题,分段函数是一个函数,其值域是各段函数值取值范围的并集,将分段函数的值域问题转化为集合之间的包含关系,是本题的一个亮点,要注意分类讨论思想的运用,属于中档题29. 【2014福建,理13】要制作一个容器为4,高为的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是_(单位:元)【答案】88【解析】试题分析:假设底面长方形的长宽分别为, . 则该容器的最低总造价是.当且仅当的时区到最小值.考点:函数的最值.【名师点睛】本题主要考查函数的应用及基本不等式,解决此题的关键是先求出函数解析式,再利用基本不等式求最值,在利用基本不等式求最值时,一定要紧扣“一正、二定、三相等”这三个条件,注意创造“定”这个条件时常要对所给式子进行拆分、组合、添加系数等处理,使之可用基本不等式来解决,若多次使用基本不等式,必须保持每次取等的一致性.30. 【2015湖南理13】已知,若存在实数,使函数有两个零点,则的取值范围是 .【答案】.【解析】试题分析:分析题意可知,问题等价于方程与方程的根的个数和为,若两个方程各有一个根:则可知关于的不等式组有解,从而;若方程无解,方程有2个根:则可知关于的不等式组有解,从而,综上,实数的取值范围是.【考点定位】1.函数与方程;2.分类讨论的数学思想.【名师点睛】本题主要考查了函数的零点,函数与方程等知识点,属于较难题,表面上是函数的零点问题,实际上是将问题等价转化为不等式组有解的问题,结合函数与方程思想和转化思想求解函数综合问题,将函数的零点问题巧妙的转化为不等式组有解的参数,从而得到关于参数的不等式,此题是创新题,区别于其他函数与方程问题数形结合转化为函数图象交点的解法,从另一个层面将问题进行转化,综合考查学生的逻辑推理能力.31. 【2015高考山东,理14】已知函数 的定义域和值域都是 ,则 .【答案】 【解析】若 ,则 在上为增函数,所以 ,此方程组无解;若 ,则在上为减函数,所以 ,解得 ,所以.【考点定位】指数函数的性质.【名师点睛】本题考查了函数的有关概念与性质,重点考查学生对指数函数的性质的理解与应用,利用方程的思想解决参数的取值问题,注意分类讨论思想方法的应用.32.【2016高考山东理数】已知函数 其中,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是_.【答案】 【解析】试题分析:画出函数图象如下图所示:由图所示,要有三个不同的根,需要红色部分图像在深蓝色图像的下方,即,解得考点:1.函数的图象与性质;2.函数与方程;3.分段函数【名师点睛】本题主要考查二次函数函数的图象与性质、函数与方程、分段函数的概念.解答本题,关键在于能利用数形结合思想,通过对函数图象的分析,转化得到代数不等式.本题能较好的考查考生数形结合思想、转化与化归思想、基本运算求解能力等.三、解答题1. 【2014山东.理20】(本小题满分13分)设函数(为常数,是自然对数的底数).()当时,求函数的单调区间;()若函数在内存在两个极值点,求的取值范围.【答案】(I)的单调递减区间为,单调递增区间为.(II)函数在内存在两个极值点时,k的取值范围为.试题解析:(I)函数的定义域为,由可得,所以当时,函数单调递减,当时,函数单调递增.所以的单调递减区间为,单调递增区间为.(II)由(I)知,时,函数在内单调递减,故在内不存在极值点;当时,设函数,因为,当时,当时,单调递增,故在内不存在两个极值点;当时,得时,函数单调递减,时,函数单调递增,所以函数的最小值为,函数在内存在两个极值点;当且仅当,解得,综上所述,函数在内存在两个极值点时,k的取值范围为.【名师点睛】本题考查应用导数研究函数的单调性、极值等.解答本题的主要困难是(II)构造函数g(x)exkx,x0,),并进一步应用导数研究函数的单调性、极值等,使问题得解.本题是一道能力题,属于难题.在考查应用导数研究函数的单调性、极值基础知识、基本方法的同时,考查考生的计算能力、应用数学知识分析问题解决问题的能力,考查转化与化归思想及分类讨论思想.2.【2013山东,理21】(本小题满分13分)设函数f(x)c(e2.718 28是自然对数的底数,cR)(1)求f(x)的单调区间、最大值;(2)讨论关于x的方程|ln x|f(x)根的个数【答案】(1)函数f(x)的单调递增区间是,单调递减区间是,最大值为.(2)当ce2时,关于x的方程|ln x|f(x)根的个数为0;当ce2时,关于x的方程|ln x|f(x)根的个数为1;当c
展开阅读全文