资源描述
三年高考(2014-2016)数学(理)试题分项版解析第四章 三角函数与解三角形 一、选择题1. 【2016高考新课标1卷】已知函数 为的零点,为图像的对称轴,且在单调,则的最大值为( )(A)11(B)9(C)7(D)5【答案】B考点:三角函数的性质【名师点睛】本题将三角函数单调性与对称性结合在一起进行考查,叙述方式新颖,是一道考查能力的好题.注意本题解法中用到的两个结论:的单调区间长度是半个周期;若的图像关于直线 对称,则 或.2. 【2016年高考四川理数】为了得到函数的图象,只需把函数的图象上所有的点( )(A)向左平行移动个单位长度 (B)向右平行移动个单位长度(C)向左平行移动个单位长度 (D)向右平行移动个单位长度【答案】D【解析】试题分析:由题意,为了得到函数,只需把函数的图像上所有点向右移个单位,故选D.考点:三角函数图像的平移.【名师点睛】本题考查三角函数的图象平移,在函数的图象平移变换中要注意人“”的影响,变换有两种顺序:一种的图象向左平移个单位得,再把横坐标变为原来的倍,纵坐标不变,得的图象,另一种是把的图象横坐标变为原来的倍,纵坐标不变,得的图象,向左平移个单位得的图象3. 【 2014湖南9】已知函数且则函数的图象的一条对称轴是( ) A. B. C. D.【答案】A【考点定位】三角函数图像 辅助角公式 定积分【名师点睛】有关定积分的题目主要是根据定积分的有关公式结合定积分的几何性质进行正确求解即可,有关三角函数对称轴的求解主要是根据整体方法求解对称轴,三角函数辅助角公式化简三角函数问题是主要是根据有关辅助角具体形式进行恰当的变换即可.4. 【2016高考新课标3理数】在中,边上的高等于,则( )(A) (B) (C) (D)【答案】C【解析】试题分析:设边上的高线为,则,所以,由余弦定理,知,故选C考点:余弦定理【方法点拨】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解5.【2015高考山东,理3】要得到函数的图象,只需要将函数的图象( )(A)向左平移个单位 (B)向右平移个单位(C)向左平移个单位 (D)向右平移个单位 【答案】B【解析】因为 ,所以要得到函数 的图象,只需将函数 的图象向右平移 个单位.故选B.【考点定位】三角函数的图象变换.【名师点睛】本题考查了三角函数的图象,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.6. 【2016高考新课标2理数】若,则( )(A) (B) (C) (D)【答案】D【解析】试题分析: ,且,故选D.考点:三角恒等变换. 【名师点睛】三角函数的给值求值,关键是把待求角用已知角表示:(1)已知角为两个时,待求角一般表示为已知角的和或差(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余互补”关系7. 【2014高考陕西版理第2题】函数的最小正周期是( ) 【答案】【解析】试题分析:由周期公式,又,所以函数的周期,故选.考点:三角函数的最小正周期.【名师点晴】本题主要考查的是余弦函数的最小正周期,属于容易题.解题时只要正确记忆正弦函数、预先函数的最小正周期周期公式,就不会出现错误8. 【2015高考陕西,理3】如图,某港口一天6时到18时的水深变化曲线近似满足函数,据此函数可知,这段时间水深(单位:m)的最大值为( )A5 B6 C8 D10【答案】C【考点定位】三角函数的图象与性质【名师点晴】本题主要考查的是三角函数的图象与性质,属于容易题解题时一定要抓住重要字眼“最大值”,否则很容易出现错误解三角函数求最值的试题时,我们经常使用的是整体法本题从图象中可知时,取得最小值,进而求出的值,当时,取得最大值9. 【2016高考新课标2理数】若将函数的图像向左平移个单位长度,则平移后图象的对称轴为( )(A) (B) (C) (D)【答案】B【解析】试题分析:由题意,将函数的图像向左平移个单位得,则平移后函数的对称轴为,即,故选B.考点: 三角函数的图象变换与对称性.【名师点睛】平移变换和伸缩变换都是针对x而言,即x本身加减多少值,而不是依赖于x加减多少值10. 【2014新课标,理4】钝角三角形ABC的面积是,AB=1,BC= ,则AC=( )A. 5 B. C. 2 D. 1【答案】B【名师点睛】本题主要考查了三角形的面积公式,余弦定理,本题属于基础题,解决本题的关健在于公式的准确与熟练,注意题目条件:三角形是钝角三角形.11. 【2016高考新课标3理数】若 ,则( )(A) (B) (C) 1 (D) 【答案】A【解析】试题分析:由,得或,所以,故选A考点:1、同角三角函数间的基本关系;2、倍角公式【方法点拨】三角函数求值:“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;“给值求值”关键是目标明确,建立已知和所求之间的联系12. 【2014四川,理3】 为了得到函数的图象,只需把函数的图象上所有的点( )A向左平行移动个单位长度 B向右平行移动个单位长度C向左平行移动个单位长度 D向右平行移动个单位长度【答案】A【解析】试题分析:,所以只需把的图象上所有的点向左平移个单位.选A.【考点定位】三角函数图象的变换.【名师点睛】本题考查三角函数图象变换、性质、辅助角公式和诱导公式等基础知识,纵向伸缩或平移是对于而言,即 或;横向伸缩或平移是相对于而言,即(纵坐标不变,横坐标变为原来的倍),(时,向左平移个单位;时,向右平移个单位)13. 【2015高考四川,理4】下列函数中,最小正周期为且图象关于原点对称的函数是( ) 【答案】A【解析】对于选项A,因为,且图象关于原点对称,故选A.【考点定位】三角函数的性质.【名师点睛】本题不是直接据条件求结果,而是从4个选项中找出符合条件的一项,故一般是逐项检验,但这类题常常可采用排除法.很明显,C、D选项中的函数既不是奇函数也不是偶函数,而B选项中的函数是偶函数,故均可排除,所以选A.14.【2015高考新课标1,理2】 =( )(A) (B) (C) (D)【答案】D【解析】原式= =,故选D.【考点定位】三角函数求值.【名师点睛】本题解题的关键在于观察到20与160之间的联系,会用诱导公式将不同角化为同角,再用两角和与差的三角公式化为一个角的三角函数,利用特殊角的三角函数值即可求出值,注意要准确记忆公式和灵活运用公式.15. 【2014课标,理6】如图,图O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示成x的函数,则的图像大致为( )【答案】C【解析】如图所示,当时,在中,在中,;当时,在中,在中,所以当时,的图象大致为C【名师点睛】本题主要考查三角函数的图象与性质和二倍角公式的运用,正确表示函数的表达式是解题的关键,本题很好的考查了考生的利用数形结合综合分析问题的能力,和计算能力.16. 【2014课标,理8】设且则( ) (A) (B) (C) (D)【答案】C【名师点睛】本题考查同角三角函数的基本关系,两角差的正弦公式以及诱导公式的应用,本题在解答过程中一定要注意, ,本题考查了考生的对公式的记忆能力,以及运算能力.17.【2015高考新课标1,理8】函数=的部分图像如图所示,则的单调递减区间为( )(A) (B)(C) (D) 【答案】D【解析】由五点作图知,解得,所以,令,解得,故单调减区间为(,),故选D.【考点定位】三角函数图像与性质【名师点睛】本题考查函数的图像与性质,先利用五点作图法列出关于方程,求出,或利用利用图像先求出周期,用周期公式求出,利用特殊点求出,再利用复合函数单调性求其单调递减区间,是中档题,正确求使解题的关键.18.【2014年.浙江卷.理4】为了得到函数的图像,可以将函数的图像( )A. 向右平移个单位 B.向左平移个单位 C.向右平移个单位 D.向左平移个单位 答案:解析:,故只需将向左平移个单位考点:三角函数化简,图像平移.【名师点睛】三角函数图象变换法:由函数ysin x的图象通过变换得到yAsin(x)的图象,有两种主要途径“先平移后伸缩”与“先伸缩后平移”平移变换和伸缩变换都是针对x而言,即x本身加减多少值,而不是依赖于x加减多少值19. 【2016高考浙江理数】设函数,则的最小正周期( )A与b有关,且与c有关 B与b有关,但与c无关C与b无关,且与c无关 D与b无关,但与c有关【答案】B【解析】试题分析:,其中当时,此时周期是;当时,周期为,而不影响周期故选B考点:1、降幂公式;2、三角函数的最小正周期【思路点睛】先利用三角恒等变换(降幂公式)化简函数,再判断和的取值是否影响函数的最小正周期20. 【2016年高考北京理数】将函数图象上的点向左平移() 个单位长度得到点,若位于函数的图象上,则( )A.,的最小值为B. ,的最小值为C.,的最小值为D.,的最小值为【答案】A【解析】试题分析:由题意得,故此时所对应的点为,此时向左平移个单位,故选A.考点:三角函数图象平移【名师点睛】三角函数的图象变换,有两种选择:一是先伸缩再平移,二是先平移再伸缩特别注意平移变换时,当自变量x的系数不为1时,要将系数先提出翻折变换要注意翻折的方向;三角函数名不同的图象变换问题,应先将三角函数名统一,再进行变换21. 【2016高考山东理数】函数f(x)=(sin x+cos x)(cos x sin x)的最小正周期是( )(A) (B) (C) (D)2【答案】B【解析】试题分析:,故最小正周期,故选B.考点:1.和差倍半的三角函数;2.三角函数的图象和性质.【名师点睛】本题主要考查和差倍半的三角函数、三角函数的图象和性质.此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题较易,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.22. 【2014重庆10】已知的内角,面积满足 所对的边,则下列不等式一定成立的是( )A. B. C. D.【答案】A【解析】考点:1、两角和与差的三角函数;2、正弦定理;3、三角形的面积公式.【名师点睛】本题考查了综合应用正弦定理,三角形的面积公式,两角和与差的三角函数,属于难题,根据题目条件熟练运用正弦定理将三角形的边与角互化是解决问题的关键.23. 【2015高考重庆,理9】若,则()A、1 B、2 C、3 D、4【答案】C【解析】由已知,选C.【考点定位】两角和与差的正弦(余弦)公式,同角间的三角函数关系,三角函数的恒等变换.【名师点晴】三角恒等变换的主要题目类型是求值,在求值时只要根据求解目标的需要,结合已知条件选用合适的公式计算即可本例应用两角和与差的正弦(余弦)公式化解所求式子,利用同角关系式使得已知条件可代入后再化简,求解过程中注意公式的顺用和逆用24.【2015高考安徽,理10】已知函数(,均为正的常数)的最小正周期为,当时,函数取得最小值,则下列结论正确的是( ) (A) (B) (C) (D)【答案】A【解析】由题意,所以,则,而当时,解得,所以,则当,即时,取得最大值.要比较的大小,只需判断与最近的最高点处对称轴的距离大小,距离越大,值越小,易知与比较近,与比较近,所以,当时,此时,当时,此时,所以,故选A.【考点定位】1.三角函数的图象与应用;2.函数值的大小比较.【名师点睛】对于三角函数中比较大小的问题,一般的步骤是:第一步,根据题中所给的条件写出三角函数解析式,如本题通过周期判断出,通过最值判断出,从而得出三角函数解析式;第二步,需要比较大小的函数值代入解析式或者通过函数图象进行判断,本题中代入函数值计算不太方便,故可以根据函数图象的特征进行判断即可.25. 【2016高考天津理数】在ABC中,若,BC=3, ,则AC= ( )(A)1(B)2(C)3(D)4【答案】A【解析】试题分析:由余弦定理得,选A.考点:余弦定理【名师点睛】1.正、余弦定理可以处理四大类解三角形问题,其中已知两边及其一边的对角,既可以用正弦定理求解也可以用余弦定理求解2利用正、余弦定理解三角形其关键是运用两个定理实现边角互化,从而达到知三求三的目的29【2014辽宁理9】将函数的图象向右平移个单位长度,所得图象对应的函数( )A在区间上单调递减 B在区间上单调递增C在区间上单调递减 D在区间上单调递增【答案】B考点:函数的性质.【名师点睛】本题考查三角函数图象的变换、三角函数图象和性质、复合函数的单调性.其易错点是平移方向与“+、-”混淆.本题是一道基础题,重点考查三角函数图象的变换、三角函数图象和性质等基础知识,同时考查考生的计算能力. 本题是教科书及教辅材料常见题型,能使考生心理更稳定,利于正常发挥.30. 【2015湖南理2】将函数的图像向右平移个单位后得到函数的图像,若对满足的,有,则( )A. B. C. D.【答案】D.【解析】试题分析:向右平移个单位后,得到,又,不妨,又,故选D.【考点定位】三角函数的图象和性质.【名师点睛】本题主要考查了三角函数的图象和性质,属于中档题,高考题对于三角函数的考查,多以为背景来考查其性质,解决此类问题的关键:一是会化简,熟悉三角恒等变形,对三角函数进行化简;二是会用性质,熟悉正弦函数的单调性,周期性,对称性,奇偶性等.31. 【2015陕西理6】“”是“”的( )A充分不必要条件 B必要不充分条件 C充分必要条件 D既不充分也不必要条件【答案】A【考点定位】1、二倍角的余弦公式;2、充分条件与必要条件【名师点晴】本题主要考查的是二倍角的余弦公式和充分条件与必要条件,属于容易题解题时一定要注意时,是的充分条件,是的必要条件,否则很容易出现错误充分、必要条件的判断即判断命题的真假,在解题中可以根据原命题与其逆否命题进行等价转化二、填空题.1. 【2014高考北京理第14题】设函数(是常数,).若在区间上具有单调性,且,则的最小正周期为 .【答案】【解析】试题分析:由在区间上具有单调性,且知,函数的对称中心为,由知函数的对称轴为直线,设函数的最小正周期为,所以,即,所以,解得.考点:函数的对称性、周期性,容易题.【名师点睛】本题考查三角函数图象与性质,本题属于中等难度选填题,有关三角函数图象与性质及三角函数图像变换问题常在高考题目中出现,但本题重点考查函数图像的对称轴和对称中心以及对称轴和对称中心与周期性的关系,这样的考法并不多见,事实上,函数图象有两轴、两心、或一轴一心都会联想到函数的周期性,备考模拟题经常见到,但高考题偶尔遇到,不是很多.2. 【2015高考北京,理12】在中,则【答案】1【解析】考点定位:本题考点为正弦定理、余弦定理的应用及二倍角公式,灵活使用正弦定理、余弦定理进行边化角、角化边.【名师点睛】本题考查二倍角公式及正弦定理和余弦定理,本题属于基础题,题目所求分式的分子为二倍角正弦,应用二倍角的正弦公式进行恒等变形,变形后为角的正弦、余弦式,灵活运用正弦定理和余弦定理进行角化边,再把边长代入求值.3. 【2014高考广东卷.理.12】在中,角.所对应的边分别为.,已知,则 .【答案】.【解析】,由边角互化得,即,即,所以.【考点定位】本题考查正弦定理中的边角互化思想的应用以及两角和的三角函数,属于中等题.【名师点晴】本题主要考查的是正弦定理和两角和的正弦公式,属于中等题解题时要弄清楚是求边还是求角, 否则很容易出现错误解本题需要掌握的知识点是正弦定理、两角和的正弦公式和三角函数的诱导公式,即(其中为外接圆的半径),4. 【2015高考广东,理11】设的内角,的对边分别为,若, ,则 . 【答案】【解析】因为且,所以或,又,所以,又,由正弦定理得即解得,故应填入【考点定位】三角形的内角和定理,正弦定理应用【名师点睛】本题主要考查三角形的内角和定理、运用正弦定理解三角形,属于容易题,解答此题要注意由得出或时,结合三角形内角和定理舍去5. 【2016高考江苏卷】在锐角三角形中,若,则的最小值是 .【答案】8.考点:三角恒等变换,切的性质应用【名师点睛】消元与降次是高中数学主旋律,利用三角形中隐含的边角关系作为消元依据是本题突破口,斜三角形中恒有,这类同于正余弦定理,是一个关于切的等量关系,平时多总结积累常见的三角恒等变形,提高转化问题能力,培养消元意识6. 【2014江苏,理5】已知函数与函数,它们的图像有一个横坐标为的交点,则的值是 .【答案】【解析】由题意,即,因为,所以【名师点晴】从交点得到等量关系:关于的复角的三角函数式的值由于值是特殊角的三角函数值,所以本题“给值求角”,根据角的范围,确定角7. 【2015江苏高考,8】已知,则的值为_.【答案】3【解析】【考点定位】两角差正切公式【名师点晴】善于发现角之间的差别与联系,合理对角拆分,完成统一角和角与角转换的目的是三角函数式的求值的常用方法. 三角函数求值有三类(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角8. 【2014江苏,理14】若的内角满足,则的最小值是 .【答案】【名师点晴】如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到利用基本不等式求最值,需注意一正二定三相等的条件.9. 【2014新课标,理14】函数的最大值为_.【答案】1【解析】由题意知:=,即,因为,所以的最大值为1.【名师点睛】本题考查了三角恒等变形公式,三角函数的性质,属于基础题目,根据三角恒等变形公式将已知函数的解析式化为的形式即可.10. 【2016高考江苏卷】定义在区间上的函数的图象与的图象的交点个数是 .【答案】7【解析】由,因为,所以共7个考点:三角函数图像【名师点睛】求函数图像交点个数,可选用两个角度:一是直接求解,如本题,解一个简单的三角方程,此方法立足于易于求解,二是数形结合,分别画出函数图像,数交点个数,此法直观,但对画图要求较高,必须准确,尤其明确增长幅度.11 .【2016高考新课标3理数】函数的图像可由函数的图像至少向右平移_个单位长度得到【答案】考点:1、三角函数图象的平移变换;2、两角和与差的正弦函数【误区警示】在进行三角函数图象变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母而言,即图象变换要看“变量”起多大变化,而不是“角”变化多少12. 【2014四川,理13】如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为,此时气球的高是,则河流的宽度BC约等于 .(用四舍五入法将结果精确到个位.参考数据:,)【答案】60【解析】试题分析:,.【考点定位】解三角形.【名师点睛】在三角形中,已知两角一边时可以使用正弦定理解三角形.13. 【2015高考四川,理12】 .【答案】.【考点定位】三角恒等变换及特殊角的三角函数值.有.第二种方法是直接凑为特殊角,利用特殊角的三角函数值求解.【名师点睛】这是一个来自于课本的题,这告诉我们一定要立足于课本.首先将两个角统一为一个角,然后再化为一个三角函数一般地,有.第二种方法是直接凑为特殊角,利用特殊角的三角函数值求解.14. 【2014课标,理16】已知分别为三个内角的对边,且,则面积的最大值为_【答案】【解析】由,且,故,又根据正弦定理,得,化简得,故,所以,又,故【名师点睛】本题主要考查正弦定理和余弦定理的应用,以及基本不等式的应用,熟练掌握正弦定理和余弦定理的应用,以及基本不等式的应用是解决这类问题的关键,本题主要考查考生的计算能力.15.【2015高考新课标1,理16】在平面四边形ABCD中,A=B=C=75,BC=2,则AB的取值范围是 . 【答案】(,)【考点定位】正余弦定理;数形结合思想【名师点睛】本题考查正弦定理及三角公式,作出四边形,发现四个为定值,四边形的形状固定,边BC长定,平移AD,当AD重合时,AB最长,当CD重合时AB最短,再利用正弦定理求出两种极限位置是AB的长,即可求出AB的范围,作出图形,分析图形的特点是找到解题思路的关键.16. 【2014年.浙江卷.理17】如图,某人在垂直于水平地面的墙面前的点处进行射击训练.已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大值 答案:解析:由勾股定理可得,过作,交于,连结,则,设,则,由得,在直角中,故,令,令得,代入得,故的最大值为考点:解三角形,求最值.【名师点睛】本题主要考查了解直角三角形的有关问题,根据所给条件构造直角三角形,运用勾股定理求解直角边长,然后运用导数有关性质解决所求角正切的最值问题.17.【2016高考新课标2理数】的内角的对边分别为,若,则 【答案】【解析】试题分析:因为,且为三角形内角,所以,又因为,所以.考点: 三角函数和差公式,正弦定理.【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到18. 【2015高考浙江,理11】函数的最小正周期是 ,单调递减区间是 【答案】,.【解析】试题分析:,故最小正周期为,单调递减区间为,.【考点定位】1.三角恒等变形;2.三角函数的性质【名师点睛】本题考查了三角恒等变形与函数的性质,属于中档题,首先利用二倍角的降幂变形对的表达式作等价变形,其次利用辅助角公式化为形如的形式,再由正弦函数的性质即可得到最小正周期与单调递减区间,三角函数是高考的热点问题,常考查的知识点有三角恒等变形,正余弦定理,单调性周期性等.19.【2015高考重庆,理13】在ABC中,B=,AB=,A的角平分线AD=,则AC=_.【答案】【解析】由正弦定理得,即,解得,从而,所以,.【考点定位】解三角形(正弦定理,余弦定理)【名师点晴】解三角形就是根据正弦定理和余弦定理得出方程进行的当已知三角形边长的比时使用正弦定理可以转化为边的对角的正弦的比值,本例第一题就是在这种思想指导下求解的;当已知三角形三边之间的关系式,特别是边的二次关系式时要考虑根据余弦定理把边的关系转化为角的余弦关系式,再考虑问题的下一步解决方法20. 【2014,安徽理11】若将函数的图像向右平移个单位,所得图像关于轴对称, 则的最小正值是_【答案】【解析】考点:1三角函数的平移;2三角函数恒等变换与图象性质【名师点睛】在进行图像变换时,提倡先平移后伸缩,但先伸缩后平移在题中经常出现,必须熟练掌握.无论哪种变化,请切记每一个变换总是对变量而言的,即图像变换要看“变量”发生多大变化,而不是“角”变化多少.若图像关于轴对称,即是偶函数,不妨将原函数向着方向化简.21. 【2016高考浙江理数】已知2cos2x+sin 2x=Asin(x+)+b(A0),则A=_,b=_【答案】 【解析】试题分析:,所以考点:1、降幂公式;2、辅助角公式【思路点睛】解答本题时先用降幂公式化简,再用辅助角公式化简,进而对照可得和22. 【2014天津,理12】在中,内角所对的边分别是已知,则的值为_【答案】【解析】试题分析:代入得,由余弦定理得考点:1正弦定理;2余弦定理的推论名师点睛:本题考查解三角形有关的问题,重点考查余弦定理,注重考查学生的减元意识。本题属于基础题,是备考时突出训练的题型。这种题学生很容易入手.近几年高考大多以考查三角函数图象与性质、三角函数图象变换、三角函数的和、差、倍角公式的计算,特别是利用正弦定理、余弦定理解三角形。23【2015高考天津,理13】在 中,内角 所对的边分别为 ,已知的面积为 , 则的值为 .【答案】【考点定位】同角三角函数关系、三角形面积公式、余弦定理.【名师点睛】本题主要考查同角三角函数关系、三角形面积公式、余弦定理.解三角形是实际应用问题之一,先根据同角三角关系求角的正弦值,再由三角形面积公式求出,解方程组求出的值,用余弦定理可求边有值.体现了综合运用三角知识、正余弦定理的能力与运算能力,是数学重要思想方法的体现.24. 【2015高考湖北,理12】函数的零点个数为 【答案】2【解析】因为 所以函数的零点个数为函数与图象的交点的个数,函数与图象如图,由图知,两函数图象有2个交点,所以函数有2个零点.【考点定位】二倍角的正弦、余弦公式,诱导公式,函数的零点【名师点睛】数形结合思想方法是高考考查的重点. 已知函数的零点个数,一般利用数形结合转化为两个图象的交点个数,这时图形一定要准确。这种数形结合的方法能够帮助我们直观解题.由“数”想图,借“图”解题.25. 【2015高考湖北,理13】如图,一辆汽车在一条水平的公路上向正西行驶,到处时测得公路北侧一山顶D在西偏北的方向上,行驶600m后到达处,测得此山顶在西偏北的方向上,仰角为,则此山的高度 m. 【答案】【解析】依题意,在中,由,所以,因为,由正弦定理可得,即m,在中,因为,所以,所以m.【考点定位】三角形三内角和定理,三角函数的定义,有关测量中的的几个术语,正弦定理.【名师点睛】本题是空间四面体问题,不能把四边形看成平面上的四边形.26. 【2014 上海,理1】 函数的最小正周期是.【答案】【解析】由题意,【考点】三角函数的周期.【名师点睛】三角变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为yAsin(x)的形式再研究性质,解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题27. 【2014福建,理12】在中,,则的面积等于_【答案】【解析】试题分析:由正弦定理可得.所以的面积等于.考点:1.正弦定理.2.三角形的面积.【名师点睛】本题主要考查正弦定理、三角形面积公式,是基础题,掌握公式是解决此类问题的关键.本题用到的正弦定理是 ,若给出两边与一边所对的角,求另一边所对的角,可利用此公式.28. 【2015高考福建,理12】若锐角的面积为 ,且 ,则 等于_【答案】【解析】由已知得的面积为,所以,所以由余弦定理得,【考点定位】1、三角形面积公式;2、余弦定理【名师点睛】本题考查余弦定理,余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题;知道两边和其中一边的对角,利用余弦定理可以快捷求第三边,属于基础题三、解答题1. 【2016年高考北京理数】(本小题13分)在ABC中,.(1)求 的大小;(2)求 的最大值.【答案】(1);(2).【解析】考点:1.三角恒等变形;2.余弦定理.【名师点睛】正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据其主要方法有:化角法,化边法,面积法,运用初等几何法注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想2. 【2014高考北京理第15题】(本小题满分13分)如图,在中,点在边上,且,.(1)求;(2)求,的长.【答案】(1);(2)7.【解析】试题分析:(1)由条件,根据求,再由两个角的差的正弦公式求;(2)根据正弦定理求出,再由余弦定理求.考点:同角三角函数的关系,两个角的差的正弦公式,正弦定理与余弦定理.【名师点睛】本题考查三角函数及解三角形有关知识,本题属于基础题,是备考重点训练题型,近几年高考大多以考查和、差、倍角的三角函数计算、三角函数图象与性质、三角函数图象变换、利用正弦定理、余弦定理解三角形为主,有的单独考查一个考点,有时分两步两个考点综合考查(如本题).3. 【2015高考北京,理15】已知函数() 求的最小正周期;() 求在区间上的最小值【答案】(1),(2)【解析】 () (1)的最小正周期为;(2),当时,取得最小值为:考点定位: 本题考点为三角函数式的恒等变形和三角函数图象与性质,要求熟练使用降幂公式与辅助角公式,利用函数解析式研究函数性质,包括周期、最值、单调性等【名师点睛】本题考查三角函数式的恒等变形及三角函数的图象与性质,本题属于基础题,要求准确应用降幂公式和辅助角公式进行变形,化为标准的形式,借助正弦函数的性质去求函数的周期、最值等,但要注意函数的定义域,求最值要给出自变量的取值.4. 【2015高考广东,理16】在平面直角坐标系中,已知向量,(1)若,求tan x的值;(2)若与的夹角为,求的值【答案】(1);(2)【考点定位】向量数量积的坐标运算,两角和差公式的逆用,知角求值,知值求角【名师点睛】本题主要考查向量数量积的坐标运算,两角和差公式的逆用,知角求值和知值求角等问题以及运算求解能力,属于中档题,解答本题关键在于由向量的垂直及其坐标运算得到运用两角和差公式的逆用合并为5. 【2014高考广东卷.理.16】 (本小题满分12分)已知函数,且.(1)求的值;(2)若,求.【答案】(1);(2).【解析】(1),所以,;(2) , , ,则, .【考点定位】本题考查诱导公式.同角三角函数的基本关系以及两角和的三角函数,综合考查三角函数的求值问题,属于中等题.【名师点晴】本题主要考查的是特殊角的三角函数值、两角和与差的正弦公式、同角三角函数的基本关系和三角函数的诱导公式,属于中等题解本题需要掌握的知识点是两角和与差的正弦公式、同角三角函数的基本关系和三角函数的诱导公式,即,6. 【2016高考新课标1卷】 (本小题满分为12分)的内角A,B,C的对边分别为a,b,c,已知 (I)求C;(II)若的面积为,求的周长【答案】(I)(II)【解析】(II)由已知,又,所以由已知及余弦定理得,故,从而所以的周长为考点:正弦定理、余弦定理及三角形面积公式【名师点睛】三角形中的三角变换常用到诱导公式, ,就是常用的结论,另外利用正弦定理或余弦定理处理条件中含有边或角的等式,常考虑对其实施“边化角”或“角化边.”7. 【 2014湖南18】如图5,在平面四边形中,.(1)求的值;(2)若,求的长.【答案】(1) (2) 【解析】试题分析:(1)题目已知三角形的三条边,利用的余弦定理即可得到该角的余弦值.(2)利用(1)问得到的的余弦结合正余弦之间的关系即可求的该角的正弦值,再利用正余弦之间的关系即可得到,而与之差即为,则利用正弦的和差角公式即可得到角的正弦值,再利用三角形的正弦定理即可求的边长.试题解析: (1)由关于的余弦定理可得,所以.(2)因为为四边形内角,所以且,则由正余弦的关系可得且,再由正弦的和差角公式可得,再由的正弦定理可得.【考点定位】三角形正余弦定理 正余弦之间的关系与和差角公式【名师点睛】本题主要考查了正弦定理和余弦定理的综合运用,三角函数恒等变换的应用考查了学生对基础知识的综合运用高考中经常将三角变换与解三角形知识综合起来命题,期中关键是三角变换,而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式8. 【2016高考山东理数】(本小题满分12分)在ABC中,角A,B,C的对边分别为a,b,c,已知 ()证明:a+b=2c;()求cosC的最小值.【答案】()见解析;()【解析】试题分析:()根据两角和的正弦公式、正切公式、正弦定理即可证明;()根据余弦定理公式表示出cosC,由基本不等式求cosC的最小值.试题解析:由题意知,化简得,即.因为,所以.从而.由正弦定理得.由知,所以 ,当且仅当时,等号成立.故 的最小值为.考点:1.和差倍半的三角函数;2. 正弦定理、余弦定理;3. 基本不等式.【名师点睛】此类题目是解三角形问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简三角恒等式,利用正弦定理实现边角转化,达到证明目的;三角形中的求角问题,往往要利用余弦定理用边表示角的函数.本题覆盖面较广,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.9. 9.【2014江苏,理15】已知.(1)求的值;(2)求的值.【答案】(1);(2)【名师点晴】善于发现角之间的差别与联系,合理对角拆分,完成统一角和角与角转换的目的是三角函数式的求值的常用方法. 三角函数求值有三类(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角10. 【2015江苏高考,15】(本小题满分14分)在中,已知.(1)求的长;(2)求的值.【答案】(1);(2)【解析】试题分析:(1)已知两边及夹角求第三边,应用余弦定理,可得的长,(2)利用(1)的结果,则由余弦定理先求出角C的余弦值,再根据平方关系及三角形角的范围求出角C的正弦值,最后利用二倍角公式求出的值.试题解析:(1)由余弦定理知,所以【考点定位】余弦定理,二倍角公式【名师点晴】如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到已知两角和一边或两边及夹角,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,本题解是唯一的,注意开方时舍去负根.11. 【2016高考江苏卷】(本小题满分14分)在中,AC=6,(1)求AB的长;(2)求的值. 【答案】(1)(2) 【解析】试题分析:(1)利用同角三角函数关系求 再利用正弦定理求 (2)利用诱导公式及两角和余弦公式分别求,最后根据两角差余弦公式求,注意开方时正负取舍.试题解析:解(1)因为所以由正弦定理知,所以(2)在三角形ABC中,所以于是又,故因为,所以因此考点:同角三角函数关系,正余弦定理,两角和与差公式【名师点睛】三角函数是以角为自变量的函数,因此解三角函数题,首先从角进行分析,善于用已知角表示所求角,即注重角的变换.角的变换涉及诱导公式、同角三角函数关系、两角和与差公式、二倍角公式、配角公式等,选用恰当的公式,是解决三角问题的关键,明确角的范围,对开方时正负取舍是解题正确的保证.12. 【2015高考山东,理16】设.()求的单调区间;()在锐角中,角的对边分别为,若,求面积的最大值.【答案】(I)单调递增区间是;单调递减区间是(II) 面积的最大值为【解析】(I)由题意知 由 可得由 可得所以函数 的单调递增区间是 ;单调递减区间是(II)由 得 由题意知为锐角,所以 由余弦定理: 可得: 即: 当且仅当时等号成立.因此 所以面积的最大值为【考点定位】1、诱导公式;2、三角函数的二倍角公式;3、余弦定理;4、基本不等式.【名师点睛】本题考查了三角函数的诱导公式、二倍角公式与解三角形的基本知识和基本不等式,意在考查学生综合利用所学知识分析解决问题的能力,余弦定理结合基本不等式解决三角形的面积问题是一种成熟的思路.13. 【2014山东.理16】(本小题满分12分)已知向量,设函数,且的图象过点和点.()求的值;()将的图象向左平移()个单位后得到函数的图象.若的图象上各最高点到点的距离的最小值为1,求的单调增区间.【答案】(I).(II)函数的单调递增区间为.(2)由(1)知:.由题意知:,依题意知到点的距离为1的最高点为.将其代入得,可得,得到,由,得,得到的单调递增区间为.试题解析:(1)由题意知:.因为的图象过点和,所以,即,解得.(2)由(1)知:.由题意知:,设的图象上符合题意的最高点为,由题意知:,所以,即到点的距离为1的最高点为.将其代入得,因为,所以,因此,由,得,所以,函数的单调递增区间为.【名师点睛】本题考查平面向量的数量积、平面向量的坐标运算、和差倍半的三角函数、三角函数的性质.解答本题的关键,是理解概念,掌握公式,熟练地进行数学式子变形.本题的易错点是运算量较大.本题属于能力题,中等难度,在考查平面向量、三角函数等基础知识的同时,考查考生的计算及逻辑思维能力.14. 【2016高考天津理数】已知函数f(x)=4tanxsin()cos()-.()求f(x)的定义域与最小正周期;()讨论f(x)在区间上的单调性.【答案】(),()在区间上单调递增, 在区间上单调递减.【解析】试题分析:()先利用诱导公式、两角差余弦公式、二倍角公式、配角公式将函数化为基本三角函数:,再根据正弦函数性质求定义域、周期根据(1)的结论,研究三角函数在区间上单调性解:令函数的单调递增区间是由,得 设,易知.所以, 当时, 在区间上单调递增, 在区间上单调递减.考点:三角函数性质,诱导公式、两角差余弦公式、二倍角公式、配角公式【名师点睛】三角函数是以角为自变量的函数,因此解三角函数题,首先从角进行分析,善于用已知角表示所求角,即注重角的变换.角的变换涉及诱导公式、同角三角函数关系、两角和与差公式、二倍角公式、配角公式等,选用恰当的公式,是解决三角问题的关键,明确角的范围,对开方时正负取舍是解题正确的保证. 对于三角函数来说,常常是先化为yAsin(x)k的形式,再利用三角函数的性质求解三角恒等变换要坚持结构同化原则,即尽可能地化为同角函数、同名函数、同次函数等,其中切化弦也是同化思想的体现;降次是一种三角变换的常用技巧,要灵活运用降次公式15.【2015高考陕西,理17】(本小题满分12分)的内角,所对的边分别为,向量与平行(I)求;(II)若,求的面积【答案】(I);(II)解法二:由正弦定理,得,从而,又由,知,所以.故所以的面积为.考点:1、平行向量的坐标运算;2、正弦定理;3、余弦定理;4、三角形的面积公式.【名师点晴】本题主要考查的是平行向量的坐标运算、正弦定理、余弦定理和三角形的面积公式,属于中档题解题时一定要注意角的范围,否则很容易失分高考中经常将三角变换与解三角形知识综合起来命题,期中关键是三角变换,而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式16. 【2016高考浙江理数】(本题满分14分)在ABC中,内角A,B,C所对的边分别为a,b,c. 已知b+c=2a cos B.(I)证明:A=2B;(II)若ABC的面积,求角A的大小.【答案】(I)证明见解析;(II)或试题分析:(I)先由正弦定理可得,进而由两角和的正弦公式可得,再判断的取值范围,进而可证;(II)先由三角形的面积公式可得,进而由二倍角公式可得,再利用三角形的内角和可得角的大小试题解析:(I)由正弦定理得,故,于是又,故,所以或,因此(舍去)或,所以,(II)由得,故有,因,得又,所以当时,;当时,综上,或考点:1、正弦定理;2、两角和的正弦公式;3、三角形的面积公式;4、二倍角的正弦公式【思路点睛】(I)用正弦定理将边转化为角,进而用两角和的正弦公式转化为含有,的式子,根据角的范围可证;(II)先由三角形的面积公式及二倍角公式可得含有,的式子,再利用三角形的内角和可得角的大小17. 【2014高考陕西版理第16题】的内角所对的边分别为.(1)若成等差数列,证明:;(2)若成等比数列,求的最小值.【答案】(1)证明见解析;(2).(2)因为成等比数列,所以,由余弦定理得,根据基本不等式(当且仅当时等号成立)得(当且仅当时等号成立),即得,所以的最小值为试题解析:(1)成等差数列由正弦定理得(2)成等比数列由余弦定理得(当且仅当时等号成立)(当且仅当时等号成立)(当且仅当时等号成立)即所以的最小值为考点:正弦定理;余弦定理;基本不等式.【名师点晴】本题主要考查的是正弦定理;余弦定理及基本不等式,属于中档题,在解有关三角形问题时一个是(三角形内角和定理),另一个是正弦定理、余弦定理非常重要,它们是解有关三角形问题的基石.,在本题中,适时运用基本不等式可求的最小值.18. 【2016年高考四川理数】(本小题满分12分)在ABC中,角A,B,C所对的边分别是a,b,c,且.(I)证明:;(II)若,求.【答案】()证明详见解析;()4.【解析】试题分析:()已知条件式中有边有角,利用正弦定理,将边角进行转化(本小题是将边转化为角),结合诱导公式进行证明;()从已知式可以看出首先利用余弦定理解出cos A=,再根据平方关系解出sinA,代入()中等式sin Asin B=sin Acos B+cos Asin B,解出tanB的值.()由已知,b2+c2a2=bc,根据余弦定理,有cos A=所以sin A=由(),sin Asin B=sin Acos B+cos Asin B,所以sin B=cos B+sin B,故考点:正弦定理、余弦定理、商数关系、平方关系.【名师点睛】本题考查正弦定理、余弦定理、商数关系等基础
展开阅读全文