资源描述
新版-新版数学高考复习资料-新版 1 1专题能力训练20数形结合思想(时间:60分钟满分:100分)一、选择题(本大题共8小题,每小题5分,共40分)1.已知函数f(x)=则下列结论正确的是() A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为-1,+)2.函数f(x)=lg(|x|+1)-sin 2x的零点个数为()A.9B.10C.11D.123.(20xx浙江杭州适应性考试)若函数y=kx的图象上存在点(x,y)满足约束条件则实数k的最大值为()A.1B.2CD4.已知集合M=(x,y)|x2+y21,若实数,满足:对任意的(x,y)M,都有(x,y)M,则称(,)是集合M的“和谐实数对”,则以下集合中,存在“和谐实数对”的是()A.(,)|+=4B.(,)|2+2=4C.(,)|2-4=4D.(,)|2-2=45.已知点P是抛物线y2=-16x上一点,设P到此抛物线准线的距离是d1,到直线x+y-10=0的距离是d2,则d1+d2的最小值是()A.4B.6C.7D.86.设函数f(x)=若关于x的方程f(x)-loga(x+1)=0(a0且a1)在区间0,5内恰有5个不同的根,则实数a的取值范围是()A.(1,)B.(,+)C.(,+)D.()7.圆C的方程为(x-2)2+y2=4,圆M的方程为(x-2-5sin )2+(y-5cos )2=1(R),过圆C上任意一点P作圆M的两条切线PE,PF,切点分别为E,F,则的最小值为()A.6BC.7D8.在平面内,定点A,B,C,D满足|=|=|,=-2,动点P,M满足|=1,则|2的最大值是()ABCD二、填空题(本大题共6小题,每小题5分,共30分)9.(20xx浙江吴越联盟第二次联考)若点M(x,y)为平面区域上的一个动点,则x-y的取值范围是.10. 对于实数a和b,定义运算“*”:a*b=设f(x)=(2x-1)*(x-1),且关于x的方程f(x)=m(mR)恰有三个互不相等的实数根x1,x2,x3,则x1x2x3的取值范围是.11.圆O的半径为1,P为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A和点P重合)沿着圆周顺时针滚动,经过若干次滚动,点A第一次回到点P的位置,则点A走过的路径的长度为.12.已知a是实数,函数f(x)=2a|x|+2x-a,若函数y=f(x)有且仅有两个零点,则实数a的取值范围是.13.已知向量a,b,c满足|a|=2,|b|=ab=3,若(c-2a)=0,则|b-c|的最小值是.14.设函数f(x)=ex(2x-1)-ax+a,其中a1,若存在唯一的整数x0使得f(x0)0),直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为(1)求f(x)的表达式;(2)将函数f(x)的图象向右平移个单位长度后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y=g(x)的图象,若关于x的方程g(x)+k=0在区间上有且只有一个实数解,求实数k的取值范围.16.(本小题满分15分)已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x-4)与曲线C只有一个交点,若存在,求出k的取值范围;若不存在,说明理由.参考答案专题能力训练20数形结合思想1.D2.D解析 由于y=lg(|x|+1)=画出函数图象,注意y=lg(x+1)的图象就是把y=lg x的图象向左平移一个单位,取x0的部分,另外这个函数是偶函数,图象关于y轴对称即可,再画出函数y=sin 2x的图象,如下图所示:注意周期为,两个图象原点左侧有6个交点,在原点右侧有5个交点,另外在原点相交,共计12个交点,因此函数f(x)零点个数为12,选D.3.B解析 约束条件对应的平面区域是以点(1,2),(1,-1)和(3,0)为顶点的三角形,当直线y=kx经过点(1,2)时,k取得最大值2,故选B.4.C5.C解析 设抛物线的焦点为F,由抛物线的定义可知d1=|PF|,故d1+d2的最小值就是点F到直线x+y-10=0的距离,即=7.6.C解析 要使方程f(x)-loga(x+1)=0(a0且a1)在区间0,5内恰有5个不同的根,只需y=f(x)与y=loga(x+1)的图象在区间0,5内恰有5个不同的交点,在同一坐标系内作出它们的图象,要使它们在区间0,5内恰有5个不同的交点,只需得a,故选C.7.B解析 由题意可得,圆C的圆心坐标为(2,0),半径为2,圆M的圆心坐标为(2+5sin ,5cos ),半径为1,|CM|=52+1,两圆相离.=|cos EPF,要使最小,则需|最小,EPF最大.如图,直线CM和圆C交于点H,则的最小值为,又|HM|=5-2=3,|HE|=2,sinMHE=,cos EHF=.=|cos EHF=22.故选B.8.B解析 由已知易得ADC=ADB=BDC=120,|=|=|=2.以D为原点,直线DA为x轴,过点D的DA的垂线为y轴建立平面直角坐标系,如图,则A(2,0),B(-1,-),C(-1,).设P(x,y),由已知|=1,得(x-2)2+y2=1,M.,它表示圆(x-2)2+y2=1上点(x,y)与点(-1,-3)距离平方的,(|2)max=,故选B.9.-2,0 解析 由约束条件作出可行域如图,由图可知,A(1,1),B(0,2),令z=x-y,化为y=x-z,当直线y=x-z过A时,直线在y轴上的截距最小,z有最大值为0;直线y=x-z过B时,直线在y轴上的截距最大,z有最小值为-2.x-y的取值范围是-2,0.10.解析 由定义可知,f(x)=作出函数f(x)的图象,如图所示.由图可知,当0m时,f(x)=m(mR)恰有三个互不相等的实数根x1, x2,x3.不妨设x1x20,且x2+x3=2=1,x2x3.令解得x=或x=(舍去).x10,x1x2x30.11.解析圆的半径r=1,正方形ABCD的边长a=1,正方形的边为弦时所对的圆心角为,正方形在圆上滚动了三圈,点的顺序依次为如图,第一次滚动,点A的路程A1=|AB|=,第二次滚动时,点A的路程A2=|AC|=,第三次滚动时,点A的路程A3=|DA|=,第四次滚动时,点A的路程A4=0,点A所走过的路径长度为3(A1+A2+A3+A4)=.12.(-,-1)(1,+)解析 易知a0,f(x)=0,即2a|x|+2x-a=0,变形得|x|-=-x.分别画出函数y1=|x|-,y2=-x的图象(如图所示),由图易知:当0-1或-1-0时,y1和y2的图象有两个不同的交点,当a1时,函数y=f(x)有且仅有两个零点,a(-,-1)(1,+).13.2-解析 由题意,得=,故如下图建立平面直角坐标系,设a=(1,),b=(3,0),c=(x,y),(c-2a)=0(x-2)2+y(y-2)=0(x-2)2+(y-)2=3,其几何意义为以点(2,)为圆心,为半径的圆,故其到点(3,0)的距离的最小值是2-.故选A.14.解析 设g(x)=ex(2x-1),h(x)=a(x-1),则不等式f(x)0即为g(x)h(x).因为g(x)=ex(2x-1)+2ex=ex(2x+1),当x-时,g(x)-时,g(x)0,函数g(x)单调递增.所以g(x)的最小值为g.而函数h(x)=a(x-1)表示经过点P(1,0),斜率为a的直线.如图,分别作出函数g(x)=ex(2x-1)与h(x)=a(x-1)的大致图象.显然,当a0时,满足不等式g(x)h(x)的整数有无数多个.函数g(x)=ex(2x-1)的图象与y轴的交点为A(0,-1),与x轴的交点为D.取点C.由图可知,不等式g(x)h(x)只有一个整数解时,须满足kPCakPA.而kPC=,kPA=1,所以a1.15.解 (1)f(x)= sin 2x+=sin 2x+cos 2x=sin,由题意知,最小正周期T=2,T=,=2,f(x)=sin.(2)将f(x)的图象向右平移个单位长度后,得到y=sin的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y=sin的图象.g(x)=sin.令2x-=t,0x,-t.g(x)+k=0在区间上有且只有一个实数解,即函数g(t)=sin t与y=-k在区间上有且只有一个交点.如图,由正弦函数的图象可知-k或-k=1.-k或k=-1.16.解 (1)由x2+y2-6x+5=0,得(x-3)2+y2=4,圆C1的圆心坐标为(3,0).(2)设M(x,y),点M为弦AB中点,即C1MAB,kAB=-1,即=-1,线段AB的中点M的轨迹的方程为+y2=.(3)由(2)知点M的轨迹是以C为圆心,为半径的部分圆弧EF(如下图所示,不包括两端点),且E,F,又直线l:y=k(x-4)过定点D(4,0),当直线l与圆C相切时,由得k=,又kDE=-kDF=-,结合上图可知当k时,直线l:y=k(x-4)与曲线C只有一个交点.精品数学高考复习资料精品数学高考复习资料
展开阅读全文