资源描述
三年高考(2014-2016)数学(理)试题分项版解析第一章 集合和常用逻辑用语 一、选择题1. 【2014课标,理1】已知集合,则( )A B C. D【答案】A【解析】由已知得,或,故,选A【名师点睛】本题主要考查了集合的交集运算,熟练掌握集合的交集运算规律是解题的关键,本题考查了考生的基本运算能力.2. 1.【2016高考新课标1理数】设集合 ,则 ( )(A) (B) (C) (D) 【答案】D考点:集合的交集运算【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.3. 【2015高考新课标1,理3】设命题:,则为( )(A) (B)(C) (D)【答案】C【解析】:,故选C.【考点定位】本题主要考查特称命题的否定【名师点睛】全称命题的否定与特称命题的否定是高考考查的重点,对特称命题的否定,将存在换成任意,后边变为其否定形式,注意全称命题与特称命题否定的书写,是常规题,很好考查了学生对双基的掌握程度.4. 【2016高考新课标3理数】设集合 ,则( )(A) 2,3 (B)(- ,2 3,+) (C) 3,+) (D)(0,2 3,+)【答案】D考点:1、不等式的解法;2、集合的交集运算【技巧点拨】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化5. 【2016年高考四川理数】设集合,Z为整数集,则中元素的个数是( )(A)3 (B)4 (C)5 (D)6【答案】C【解析】试题分析:由题意,故其中的元素个数为5,选C.考点:集合中交集的运算.【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.6. 【2014高考重庆理第6题】 已知命题对任意,总有;是的充分不必要条件则下列命题为真命题的是( ) 【答案】D【解析】试题分析:由题设可知:是真命题,是假命题;所以,是假命题,是真命题;所以,是假命题,是假命题,是假命题,是真命题;故选D.考点:1、指数函数的性质;2、充要条件;3、判断复合命题的真假.【名师点睛】本题主要考查了指数函数的性质,充要条件,判断复合命题的真假,属于中档题,先根据指数函数及充要条件的知识判断出每一个命题的真假,再利用真值表得出结论.7. 【2015高考重庆,理1】已知集合A=,B=,则()A、A=B B、AB= C、AB D、BA【答案】D【解析】由于,故A、B、C均错,D是正确的,选D.【考点定位】本题考查子集的概念,考查学生对基础知识的掌握程度.【名师点晴】考查集合的关系,涉及集合的相等.集合的交集运算,子集等概念,是送分题.8. 【2015高考重庆,理4】“”是“”的( )A、充要条件 B、充分不必要条件C、必要不充分条件 D、既不充分也不必要条件【答案】B【解析】,因此选B.【考点定位】充分必要条件.【名师点晴】本题把充分必要条件与对数不等式结合在一起,既考查了对数函数的性质,又考查了充分必要条件的判断,从本题可知我们可能用集合的观点看充分条件、必要条件:Ax|x满足条件p,Bx|x满足条件q,(1)如果AB,那么p是q的充分不必要条件;(2)如果BA,那么p是q的必要不充分条件;(3)如果AB,那么p是q的充要条件;(4)如果,且,那么p是q的既不充分也不必要条件本题易错点在于解对数不等式时没有考虑对数的定义域.9. 【2014年.浙江卷.理1】设全集,集合,则( )A. B. C. D. 答案:B解析:,故,故选B考点:集合运算.【名师点睛】此题属于以一元二次不等式的解法为平台,考查了补集及并集的运算,是高考中常考的题型在求补集时注意全集的范围有关集合的运算问题要注意:(1)看元素组成集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的关键(2)对集合化简有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了、易于解决(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和韦恩(Venn)图10. 【2016高考山东理数】设集合 则=( )(A) (B)(C)(D)【答案】C【解析】试题分析:,则,选C.考点:1.指数函数的性质;2.解不等式;3.及集合的运算.【名师点睛】本题主要考查集合的并集、补集,是一道基础题目.从历年高考题目看,集合的基本运算,是必考考点,也是考生必定得分的题目之一.本题与求函数值域、解不等式等相结合,增大了考查的覆盖面.11. 【2016高考新课标2理数】已知集合,则( )(A) (B) (C) (D)【答案】C考点: 集合的运算.【名师点睛】集合的交、并、补运算问题,应先把集合化简在计算,常常借助数轴或韦恩图处理.12. 【2015高考浙江,理1】已知集合,则( ) A. B. C. D. 【答案】C.【解析】由题意得,故选C.【考点定位】1.解一元二次不等式;2.集合的运算.【名师点睛】本题主要考查了解一元二次不等式,求集合的补集与交集,属于容易题,在解题过程中要注意在求补集与交集时要考虑端点是否可以取到,这是一个易错点,同时将不等式与集合融合,体现了知识点之间的交汇.13. 【2015高考浙江,理4】命题“且的否定形式是( )A. 且 B. 或C. 且 D. 或 【答案】D.【解析】根据全称命题的否定是特称命题,可知选D.【考点定位】命题的否定【名师点睛】本题主要考查了全称命题的否定等知识点,属于容易题,全称(存在性)命题的否定与一般命题的否定有着一定的区别,全称(存在性)命题的否定是将其全称量词改为存在量词(或把存在量词改为全称量词),并把结论否定;而一般命题的否定则是直接否定结论即可,全称量词与特称量词的意义,是今年考试说明中新增的内容,在后续的复习时应予以关注.14. 【2016年高考北京理数】已知集合,则( )A.B. C. D.【答案】C【解析】试题分析:由,得,故选C.考点:集合交集.【名师点睛】1首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合,三者是不同的2集合中的元素具有三性确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽视互异性,疏于检验而出错3数形结合常使集合间的运算更简捷、直观对离散的数集间的运算或抽象集合间的运算,可借助Venn图实施,对连续的数集间的运算,常利用数轴进行,对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用4空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能另外,不可忽视空集是任何元素的子集15. 【2015高考天津,理4】设 ,则“ ”是“ ”的( )(A)充分而不必要条件 (B)必要而不充分条件(C)充要条件 (D)既不充分也不必要条件【答案】A【解析】,或,所以“ ”是“ ”的充分不必要条件,故选A.【考点定位】不等式解法与充分条件、必要条件.【名师点睛】本题主要考查不等式的解法、充分条件与必要条件相关问题,将含绝对值不等式与一元二次不等式和解法、充分条件、必要条件、充要条件相关的问题联系在起来,体现综合应用数学知识解决问题的能力,是基础题16. .【2015高考天津,理1】已知全集 ,集合 ,集合 ,则集合( )(A) (B) (C) (D) 【答案】A【解析】,所以,故选A.【考点定位】集合的运算.【名师点睛】本题主要考查集合的运算,涉及全集、补集、交集相关概念和求补集、交集的运算,是基础题.17. 【2014天津,理7】设,则|“”是“”的 ()(A)充要不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充要又不必要条件【答案】C考点:1充分条件、必要条件、充要条件的判断;2不等式的性质【名师点睛】本题考查函数的单调性和充要条件,本题属于基础题,本题函数的单调性与不等式为载体,考查充要条件.考查学生对充要条件的理解.充要条件问题有两种:一种是本题类型,利用充要条件定义判断,另一种借助数集的包含关系加以说明. 充要条件问题主要命题方法有两种,一种为判断条件是结论的什么条件?第二种是寻求结论成立的某种条件是什么?近几年高考充要条件命题以选填题为主,表面看很简单。但由于载体素材丰富,几何、代数、三角可以随意选材,所以涉及知识较多,需要扎实的基本功.18. 【2016高考浙江理数】已知集合 则( )A2,3 B( -2,3 C1,2) D【答案】B考点:1、一元二次不等式;2、集合的并集、补集【易错点睛】解一元二次不等式时,的系数一定要保证为正数,若的系数是负数,一定要化为正数,否则很容易出错19. 【2016高考浙江理数】命题“,使得”的否定形式是( )A,使得 B,使得 C,使得 D,使得【答案】D【解析】试题分析:的否定是,的否定是,的否定是故选D考点:全称命题与特称命题的否定【方法点睛】全称命题的否定是特称命题,特称命题的否定是全称命题对含有存在(全称)量词的命题进行否定需要两步操作:将存在(全称)量词改成全称(存在)量词;将结论加以否定20. 【2014四川,理1】已知集合,集合为整数集,则( )A B C D【答案】A【解析】试题分析:,选A.【考点定位】集合的基本运算.【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.21. 【2015高考四川,理1】设集合,集合,则( ) 【答案】A【解析】,选A.【考点定位】集合的基本运算.【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.22. 【2014高考广东卷.理.1】已知集合,则( ) A. B. C. D.【答案】B【解析】由题意知,故选B.【考点定位】本题考查集合的基本运算,属于容易题.【名师点晴】本题主要考查的是集合的并集运算,属于容易题解题时要看清楚是求“”还是求“”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误23. 【2016高考山东理数】已知直线a,b分别在两个不同的平面,内.则“直线a和直线b相交”是“平面和平面相交”的( )(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件【答案】A考点:1.充要条件;2.直线与平面的位置关系.【名师点睛】充要条件的判定问题,是高考常考题目之一,其综合性较强,易于和任何知识点结合.本题涉及直线与平面的位置关系,突出体现了高考试题的基础性,能较好的考查考生分析问题解决问题的能力、空间想象能力等.24. 【2015高考广东,理1】若集合,则( ) A B C D【答案】【解析】因为,所以,故选【考点定位】一元二次方程的解集,集合的基本运算.【名师点睛】本题主要考查一元二次方程的解集,有限集合的交集运算和运算求解能力,属于容易题25. 【 2014湖南5】已知命题在命题中,真命题是( )A B. C. D.【答案】C【考点定位】命题真假 逻辑连接词 不等式【名师点睛】复合命题的真假判定主要是根据简单命题的真假结合逻辑联结次进行判断即可,如果p或q真(假)则需分三种情况讨论,如果p且q真(假)则p,q真(p真q假或p,q假,p真q假,p假q真),如果p真,则非p一定假.26. 【2016高考天津理数】设an是首项为正数的等比数列,公比为q,则“q0”是“对任意的正整数n,a2n1+a2n0”的( )(A)充要条件 (B)充分而不必要条件(C)必要而不充分条件 (D)既不充分也不必要条件【答案】C【解析】试题分析:由题意得,故是必要不充分条件,故选C.考点:充要关系【名师点睛】充分、必要条件的三种判断方法1定义法:直接判断“若p则q”、“若q则p”的真假并注意和图示相结合,例如“pq”为真,则p是q的充分条件2等价法:利用pq与非q非p,qp与非p非q,pq与非q非p的等价关系,对于条件或结论是否定式的命题,一般运用等价法3集合法:若AB,则A是B的充分条件或B是A的必要条件;若AB,则A是B的充要条件27. 【2016高考天津理数】已知集合则=( )(A)(B)(C)(D)【答案】D【解析】试题分析:选D.考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,误求并集,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确集合交集的考查立足于元素互异性,做到不重不漏.29. 【2014山东.理2】设集合,则( )A. B. C. D. 【答案】【解析】由已知所以,选.考点:绝对值不等式的解法,指数函数的性质,集合的运算.【名师点睛】本题考查集合的基本运算、函数的值域、绝对值不等式的解法等,解答本题的关键,是正确化简集合A,B,明确集合中的元素.本题体现了高考命题“小题综合化”的命题原则.本题属于基础题,注意基本概念的正确理解以及基本运算方法的准确性.30. 【2013高考陕西版理第1题】设全集为R,函数f(x)的定义域为M,则RM为()A1,1B(1,1)C(,11,)D(,1)(1,)【答案】D考点:补集的运算,容易题.【名师点晴】本题主要考查的是函数的定义域,一元二次不等式的解法和集合的补集运算,属于容易题求函数的定义域时要注意一元二次不等式的二次项系数为负,否则很容易出现错误31. 【2014高考陕西版理第1题】已知集合,则( ) 【答案】考点:集合间的运算.【名师点晴】本题主要考查的是一元二次不等式的解法和集合的交集运算,属于容易题求两个集合的交集时要注意画出数轴,利用数轴求交集可以有效防止出现错误32. 【2015高考陕西,理1】设集合,则( )A B C D【答案】A【解析】,所以,故选A【考点定位】1、一元二次方程;2、对数不等式;3、集合的并集运算【名师点晴】本题主要考查的是一元二次方程、对数不等式和集合的并集运算,属于容易题解题时要看清楚是求“”还是求“”和要注意对数的真数大于,否则很容易出现错误33. 【2014陕西理8】原命题为“若互为共轭复数,则”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )(A)真,假,真 (B)假,假,真 (C)真,真,假 (D)假,假,假【答案】【解析】试题分析:设复数,则,所以,故原命题为真;逆命题:若,则互为共轭复数;如,且,但此时不互为共轭复,故逆命题为假;否命题:若不互为共轭复数,则;如,此时不互为共轭复,但,故否命题为假;原命题和逆否命题的真假相同,所以逆否命题为真;故选.考点:命题以及命题的真假.【名师点晴】本题主要考查的是共轭复数,命题以及命题的真假等知识,属于容易题;在解答时对于正确选项要说明理由,对于错误选项则只要举出反例即可,在本题中原命题为真,则其逆否命题也为真;而对于逆命题举出反例即可说明其为假,则否命题亦为假34. 【2015高考新课标2,理1】已知集合,,则( )A B C D【答案】A【解析】由已知得,故,故选A【考点定位】集合的运算【名师点睛】本题考查一元二次不等式解法和集合运算,要求运算准确,属于基础题35. 【2014新课标,理1】设集合M=0,1,2,N=,则=( )A. 1 B. 2 C. 0,1 D. 1,2【答案】D【解析】因为N=,所以,故选D.【名师点睛】本题主要考查了集合的交集运算,熟练掌握集合的交集运算规律是解题的关键,本题考查了考生的基本运算能力.36. 【2014高考北京理第1题】 已知集合,则( )A. B C D【答案】C【解析】试题分析:集合,所以,故选C.考点:交集的运算.【名师点睛】:本题考查集合的交集运算,本题属于基础题,集合部分高考题主要以集合的概念、集合的运算为主,首先要正确解读集合,确认集合中的元素,近几年高考重点考查有限数集和无限数集的并、补运算,要求学生灵活运用韦恩图和数轴工具,正确求出结果,另外遇到点集时,还要利用直角坐标系.37. 【2014湖北卷3】设为全集,是集合,则“存在集合使得是“”的( )A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件 【答案】C综上所述,“存在集合使得是“”的充要条件.考点:集合与集合的关系,充分条件与必要条件判断,容易题.【名师点睛】以命题与命题间的充分条件与必要条件为契机,重点考查集合间的基本关系,体现了分类讨论的思想方法的重要性以及考虑问题的全面性,能较好的考查学生知识间的综合能力、知识迁移能力和科学计算能力.38. 【2015高考湖北,理5】设,. 若p:成等比数列;q:,则( )Ap是q的充分条件,但不是q的必要条件 Bp是q的必要条件,但不是q的充分条件Cp是q的充分必要条件 Dp既不是q的充分条件,也不是q的必要条件【答案】A【解析】对命题p:成等比数列,则公比且;对命题,当时,成立;当时,根据柯西不等式,等式成立,则,所以成等比数列,所以是的充分条件,但不是的必要条件.【考点定位】等比数列的判定,柯西不等式,充分条件与必要条件.【名师点睛】判断p是q的什么条件,需要从两方面分析:一是由条件p能否推得条件q,二是由条件q能否推得条件p.对于带有否定性的命题或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题39. 【2014上海,理15】设,则“”是“”的( )(A) 充分条件 (B)必要条件 (C)充分必要条件 (D)既非充分又非必要条件【答案】B【解析】若,则,但当时也有,故本题就选B【考点】充分必要条件【名师点睛】判断充分条件和必要条件的方法(1)命题判断法:设“若p,则q”为原命题,那么:原命题为真,逆命题为假时,p是q的充分不必要条件;原命题为假,逆命题为真时,p是q的必要不充分条件;原命题与逆命题都为真时,p是q的充要条件;原命题与逆命题都为假时,p是q的既不充分也不必要条件(2)集合判断法:从集合的观点看,建立命题p,q相应的集合:p:Ax|p(x)成立,q:Bx|q(x)成立,那么:若AB,则p是q的充分条件;若AB时,则p是q的充分不必要条件;若BA,则p是q的必要条件;若BA时,则p是q的必要不充分条件;若AB且BA,即AB时,则p是q的充要条件(3)等价转化法:p是q的什么条件等价于非q是非p的什么条件2转化与化归思想由于互为逆否命题的两个命题具有相同的真假性,因而当判断一个命题的真假比较困难时,可转化为判断它的逆否命题的真假48. 【2015高考福建,理1】若集合 ( 是虚数单位), ,则 等于 ( )A B C D 【答案】C【解析】由已知得,故,故选C【考点定位】1、复数的概念;2、集合的运算【名师点睛】本题考查复数的概念和集合的运算,利用和交集的定义求解,属于基础题,要注意运算准确度49. 【2015高考四川,理8】设a,b都是不等于1的正数,则“”是“”的 ( )(A) 充要条件 (B)充分不必要条件(C)必要不充分条件 (D)既不充分也不必要条件【答案】B【考点定位】命题与逻辑.【名师点睛】充分性必要性的判断问题,首先是分清条件和结论,然后考察条件推结论,结论推条件是否成立.这类问题往往与函数、三角、不等式等数学知识结合起来考.50. 【2014,安徽理2】“”是“”的 ( )A充分而不必要条件 B 必要而不充分条件 C 充分必要条件 D 既不充分也不必要条件【答案】B【解析】试题分析:因为,所以,即,因而“”是“”的必要而不充分条件 考点:1对数的运算;2充要条件【名师点睛】对于判断充分条件和必要条件的问题,首先需要将复杂的形式化简成简单形式(即化简题中所给式子或解不等式等),然后在判断两者范围的大小,在数轴上进行比较,若命题对应集合,命题对应集合,则等价于.同时要熟练掌握对数常见的运算规律,如.52. 【2015高考安徽,理3】设,则是成立的( ) (A)充分不必要条件 (B)必要不充分条件 (C)充分必要条件 (D)既不充分也不必要条件【答案】A【解析】由,解得,易知,能推出,但不能推出,故是成立的充分不必要条件,选A.【考点定位】1.指数运算;2.充要条件的概念.【名师点睛】对于指对数运算问题,需要记住常见的等式关系,如,进而转化成同底的问题进行计算;充要关系的判断问题,可以分为由“”推证“”以及由“”推证“”.54. 【2014辽宁理1】已知全集,则集合( )A B C D【答案】D【解析】试题分析:因为AB=x|x0或x1,所以,故选D.考点:集合的运算. 【名师点睛】本题考查集合的基本运算,将不等式、集合结合在一起综合考查考生的基本数学素养,是高考命题“小题综合化”的原则的具体体现.本题属于基础题,注意基本概念的正确理解以及基本运算方法的准确性.55. 【2014辽宁理5】设是非零向量,已知命题P:若,则;命题q:若,则,则下列命题中真命题是( )A B C D【答案】A【解析】试题分析:由题意可知,命题P是假命题;命题q是真命题,故为真命题.考点:命题的真假.【名师点睛】本题考查平面向量的数量积、共线向量及复合命题的真假. 本题将平面向量、简易逻辑联结词结合在一起综合考查考生的基本数学素养,体现了高考命题“小题综合化”的原则.本题属于基础题,难度不大,关键是要熟练掌握平面向量的基础知识,熟记“真值表”.56. 【2014新课标,理1】设集合M=0,1,2,N=,则=( )A. 1 B. 2 C. 0,1 D. 1,2【答案】D【解析】因为N=,所以,故选D.【考点定位】集合的运算.【名师点睛】本题考查集合的概念和运算,本题属于基础题,注意仔细观察.57. 【2015湖南理2】设,是两个集合,则“”是“”的( )A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件【答案】C.【解析】试题分析:由题意得,反之,故为充要条件,选C.【考点定位】1.集合的关系;2.充分必要条件.【名师点睛】本题主要考查了集合的关系与充分必要条件,属于容易题,高考强调集合作为工具与其他知识点的结合,解题的关键是利用韦恩图或者数轴求解,充分,必要条件的判断性问题首要分清条件和结论,然后找出条件和结论之间的推出或包含关系.二、填空题1. 【2014高考重庆理第11题】设全集_.【答案】【解析】试题分析:,。所以答案应填:考点:集合的运算.【名师点睛】本题考查了集合的概念和运算,本题属于基础题,注意求解顺序应是先内后外,同时注意仔细观察.2. 【2015高考天津,理9】是虚数单位,若复数 是纯虚数,则实数的值为 .【答案】【解析】是纯虚数,所以,即.【考点定位】复数相关概念与复数的运算.【名师点睛】本题主要考查复数相关概念与复数的运算.先进行复数的乘法运算,再利用纯虚数的概念可求结果,是容易题.3. 【2015高考山东,理12】若“”是真命题,则实数的最小值为 .【答案】1所以答案应填:1.【考点定位】1、命题;2、正切函数的性质.【名师点睛】本题涉及到全称命题、正切函数的性质、不等式恒成立问题等多个知识点,意在考查学生综合利用所学知识解决问题的能力,注意等价转化的思想的应用,此题属中档题.4. 【2016高考江苏卷】已知集合则_. 【答案】【解析】试题分析:考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确江苏高考对于集合题的考查立足于列举法,强调对集合运算有关概念及法则的理解.5. 【2014江苏,理1】已知集合,则 .【答案】【解析】由题意得.【考点定位】集合运算【名师点晴】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A且属于集合B的元素的集合. 本题需注意最后结果要写出集合形式6. 【2015高考江苏,1】已知集合,则集合中元素的个数为_.【答案】5【解析】,,则集合中元素的个数为5个.【考点定位】集合运算【名师点晴】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A或属于集合B的元素的个数. 本题需注意检验集合的元素是否满足互异性,否则容易出错7. 【2014上海,理11】. 已知互异的复数a,b满足ab0,集合a,b=,则= .【答案】【考点】集合的相等,解复数方程【名师点睛】对于集合相等首先要分析已知元素与另一个集合中哪一个元素相等,分几种情况列出方程(组)进行求解,要注意检验是否满足互异性解复数方程一般利用待定系数法求解,也可利用复数几何形式求解.8. 【2014福建,理15】若集合且下列四个关系:;有且只有一个是正确的,则符合条件的有序数组的个数是_.【答案】6【解析】考点:1.集合的概念.2.递推的数学思想.3.分类的数学思想.【名师点睛】本题主要考查集合、推理及分类讨论思想,此类题的易错点是:分类不严谨;审题不认真.本题若对“有且只有”这四个字不敏感,则在解题过程中不易找到突破口.因此这类题一定要认真审题,分类做到不重不漏,才不会陷入命题人设计的陷阱.
展开阅读全文