地铁BAS空调调节方案..

上传人:无*** 文档编号:62944545 上传时间:2022-03-16 格式:DOC 页数:30 大小:785KB
返回 下载 相关 举报
地铁BAS空调调节方案.._第1页
第1页 / 共30页
地铁BAS空调调节方案.._第2页
第2页 / 共30页
地铁BAS空调调节方案.._第3页
第3页 / 共30页
点击查看更多>>
资源描述
地铁BAS空调调节方案一概述 地铁运营中,空调系统是个耗能大户,其中对于空调系统冷机、风机、水泵 是主要的耗电设备, 要想降低空调系统的能耗, 只能从这些设备的正确运行中实 现。根本上来说,空调系统的总能耗的多少最终是由室内达到的温湿度环境决定 的,即空调系统的能耗维持整个车站温湿度与室外温湿度的差。 如果室内环境高 于大多数人都比较满意的温湿度要求, 高出需求的这部分空调系统能耗显然是毫 无必要的。因此要想降低空调系统能耗,必须首先从合理的室内温湿度环境上, 进行分析研究, 最理想的模式就是任何情况下所供给的等于所需求的。 变风量空 调的基本原理正是通过改变送入室内的风量及温度来满足整个车站人员对室内 不同温湿度的要求, 同时自动地适应室外环境对车站建筑物内温湿度的影响, 真 正达到所供即所需。 显然,不同人员对温湿度的需求是不同的, 而且室外环境也 是不停变化的,要想达到所供即所需, 空调系统就必须是一个实时自适应的系统。 地铁空调系统有别于地面建筑, 特别是空调大系统, 其调节对象是一个大空 间的温度, 具有明显的大滞后特点, 但有一点有利因素是, 广州地铁五号线环控 采用屏蔽门制式,使得被控对象免除受活塞风的干扰,这样为EMCS系统控制 调节提供了便利, 调节可只考虑出入口处的冷量散失。 正常情况下, 地铁公共区 热负荷主要来自乘客,具有一定的规律性。为阐述上的方便,本节将集中关于EMCS系统如何实现对地铁空调系统的 调节与控制,重点围绕包括水系统末端二通阀的调节控制、 冷站供回水压力控制、 机组台数控制等的控制策略及工程实现方法而展开,如下所述。二空调水系统1冷站节能及优化控制1)能量调节及水系统控制为保证冷源及水系统的正常运行, 充分利用EMCS系统强大的数据处理与 分析功能,恰当地对系统进行调节, 从而达到提高运行品质, 降低运行能耗的作 用,产生经济效益。冷源及水系统的能耗由冷水机组主机电耗、 冷冻水、冷却水和各循环水泵电 耗、冷却塔风机电耗等构成。 如果冷冻水末端各站都有良好的自动控制, 冷水机 组供冷量在满足各站需求的前提下,其节能就要靠恰当地调节机组的运行状态, 提高其制冷效率(即COP值)和降低冷冻水循环泵、冷却水循环泵及冷却塔风 机的电耗来获得。 由于冷站同时为多个车站供冷, 冷冻水循环泵须提供足够的循 环水量并满足各站的压降, 可能的节能途径是减少各个站冷冻水调节阀的节流损 失,并尽可能使循环水泵在效率最高点运行。 这样,冷源与水系统的节能控制就 主要通过如下3个途径完成:维持各车站的最低冷量需求, 尽可能提高冷水机组出口水温以提高冷水 机组的COP;当采用二级泵系统时,减少冷冻水加压泵的运行台数或降低泵的 转速,以减少水泵的电耗;根据冷负荷状态恰当地确定冷水机组运行台数,以提高冷水机组COP值;在冷水机组运行所允许的条件下,尽可能降低冷却水温度,同时又不增加冷却泵和冷却塔的运行电耗。2)冷冻水的调节控制目前供冷回路多米用级泵系统,级加压泵米用变频调速时,运行费最省。 常规的运行方式是固定冷水机组的供水温度设定值(如7C),同时按照设计工 况要求的各站压头确定末端各站供回水干管压差的设定值Apset,根据实测出的 该点压差与Apset之关系调整冷冻水加压泵的转速,使该处压差一直维持于Apset这样做可以满足各个站的要求,但并非是最省能的运行方式。如果设计工况下要求各站的资用压头为50kPa,管网压降为100kPa时,冷 水回压泵的扬程为15m。在部分负荷时,如果在7C供水温度下所有各站都只要 求50%流量,贝U管网压降仅为25 kPa,为了仍维持50 kPa的末端压差,加压泵 扬程应为7.5m。这时若将加压泵转速降至50%,其扬程仅为3.75m,因此只能 将泵的转速降至70%左右,并使其工作点左移,偏离水泵的最高效率点。由此加 压泵就不能如变频器厂商所宣传的“流量降低至一半,电耗可节约87.5%”,而只能节约50%左右(视泵的工作曲线形状),实际上此时各个站并不需要50 kPa压差。如果不调节阀门,应仅需要12.5 kPa压差。由此只好关小阀门,大部分压 力消耗在各站调节阀上。这时,如果适当提高制冷机供水温度,增加各站需要的 水量,可提高冷水机组的COP,从而降低冷水机组电耗;也可以进一步降低加 压泵转速,不去维持末端的50 kPa资用压头,减少各站调节阀的消耗,从而进 一步减少水泵能耗。实际上各个站对水量和水温的要求不会同时降低,冷冻水系统应满足所有各 站的要求,这就要靠EMCS系统观测各个车站的工作状况,确定各站对流量和 水温的最大要求,从而做出适宜的调整。当冷冻水系统的各站是用二通阀自动进行变水量调节时,其调节的本质是通 过增大水量来降低回水温度,由此使水侧平均温度下降,传至空气侧的冷量增加; 或者减少水量以提高回水温度,从而使水侧平均温度上升,减少传至空气侧的冷 量。这样,当各站的冷水阀开至最大,各站的供回水温差仍很大时,说明各站水 侧的资用压头不够,导致流量不足,应通过增加冷冻水加压泵转速来提高各站的 资用压头从而提高各站流量;当各站冷水阀开至最大,而供回水温差已很小时, 则表明通过各站的水量已很大,但水温偏高,应进一步降低供水温度。反之亦然, 当各站水阀关得很小而供回水温差仍然很小时,说明资用压头太大,各站水量太高,应降低回压泵转速;而当水阀关得很小,供回水温差过大时,表明各站在很 小的流量上即已满足需求,此时可以适当提高供水温度,使各站流量适当加大。 这样,由各站的阀位状况及供回水温差状况即可判断该各站对水侧压头及供水温 度的需求。由于冷冻水系统需同时满足所有各站对水量及水温的要求,因此可按表3-3的逻辑去确定对水温及水泵的调节。两级泵系统的控制逻辑如下表B1-08所述:表B1-08找出阀门开度最大的各站Vmax 和该各站的供回水温差 t1 阀门开度最小的各站Vmin 和该各站的供回水温差 t2若 80% Vmax 90% , tb tmax 则流量不足,应将水泵转速提高5%;若 Vmax 90%, tX tmir,且 t 供t 供 min,则水温过高,应将冷水机组出口温 度设定值降低 0.25C;Vmaxv80%, t tmax 且 t 供vt 供,max, 则水温过低, 应将冷水机组出口温度升 高 0.25C;若 Vmaxv80%, t2Atmin 则流量太大,应将水泵转速降低5%。其中tmax, tmin分别为希望的供回水最大温差和最小温差,当设计的供回水温差为5C时,可取tmax=6C,tmin=4C。允许的温差太大可降低要求 的流量,但相应要降低冷水机组出口温度设定值,降低冷水机组效率,而允许的温差太小尽管可适当提高冷水机组水温设定值, 但将使水泵流量增大,电耗增加。上述调节方式可以在满足各站工况要求的前提下最大限度地提高冷水机组 运行效率和降低本泵运行电耗,从而达到最大的节能效果。同时这种调节方式还 具有很好的稳定性。例如当Vmax大于90%,t1tmax时,按照上述逻辑, 应加大水泵转速。由此使各个站流量增大,空气侧温度降低,各调节阀相应地逐 渐关小,至开度最大的阀门阀位降至90%以下,水泵的调节停止。而按照维持末端压差的传统方法时当各站要求减少流量而关小阀门时,末端压力升高,由此使水泵转速降低,这将导致各个站流量又偏小,空气侧温度逐渐 升高,于是又纷纷开大阀门,使流量加大,引起末端压力监测点的压力降低,进 而又导致水泵转速增加。由于各个站是根据工况来调节其阀门, 具有较大热惯性 和时间延迟,而阀门及水泵的调节作用导致的末端压力的变化惯性很小,由此很容易造成上述的振荡过程发生,需要小心地设计控制算法,整定好调节参数,才 能消除此振荡。与此相比,表B1-11的调节方式却是从其机理上就具备自稳定性 质的调节过程,建议采用这种方案。上述的调节方法的条件是各车站空调为两通阀变流量调节, 并均有控制器控 制。各车站的现场控制器都需要具有与冷站的控制器通讯功能。通过通讯得到各 个冷水站的实际需求,从而实现这种恰好使各站的要求得到满足的调节。如果广州地铁四号线的工程现状不具备上述调节的条件,我们研究了一套压 差方法调节的优化方案,并在以往的工程实际应用中,十分成功。此方案具体描 述如下图B1-14所示:上述调节方法中的表B1-08的控制逻辑中,不难发现供回水管的温差及阀门 的开度的变化,其目标在房间的冷量需求,其源在冷水机组的出水口水温及供回 水压差,即房间冷量的需求影响着阀门的开度,当阀门开到最大程度,将会影响着供回水管的温差的增大,当温差变化达到极限后,还不能满足房间冷量的需求 时,需调节二级泵增压,二级泵转速达到极限(极限指设备运行最佳效率的区间 范围,比如转速在80%90%范围运行效率最高)时,就只能降低冷水机组出水 口的水温来满足要求。下面我们再分析一下,当房间冷量需求一定时,冷机出水口水温t(本参数设为定值,此定值设定点为供冷高效效范围的中间值,在所有的参数变化均不能满足负荷要求时,方可降低此参数)、供回水压差P、供回水温差t、空调二 通阀阀位L四个变量的关系,见下表B1-09:表B1-091当 t、 t 一定时,PxL ;2当 t、L 一定时,Pxt;3当 t、 P 一定时,L t;4.当改变 t 直接影响P,间接影响 L 和厶 t;弄清上述参数的关系后,我们很容易得出以下结论一一表B1-10的各参数之 间的逻辑关系(因为间接影响因素滞后,本逻辑关系可按各个环节组织,忽略间 接影响因素):表B1-10注释:V0 :送风机转速to:送风温度设定值to:送风温度设定浮动值L :二通阀位置P:压差设定值 P:压差设定浮动值V1 :二级泵转速t :冷机出水口水温设定值 t:冷机出水口水温设定浮动值送风环节逻辑:A1.当 V0 90% 时,t0=t0- t0 ;A2.当 80%V0 90%时,保持正常工况;A3.当 V0 90% 时,P=AP + P;B2.当 80%L90%时,保持正常工况;B3.当 L 90% 时,t1=t1- t1;C2.当 80%V1 90%时,保持正常工况;C3.当 V1 Ir时,属于盛夏季节。这 时由于回风焓值低于室外空气焓值, 为了节约能量, 充分利用室内回风, 空调系 统采用最小新风量降温除湿工况。 采用此工况时,EMCS系统按比例连锁调节新 风阀和回风阀开度, 使一部分回风排出车站外, 另一部分回风按最小新风比与新 风混合,再经表冷器冷却后送风,表冷器的空气处理过程是降温减湿。1室外空气状态变化随着室外空气焓值的增高, 可调节表冷器的电动二通阀, 使通过表冷器的冷冻水流量逐渐增加以保证处理到所需要的露点温度。2室内热湿负荷变化当室内热负荷变化时, 可使用变风量调节方法, 充分利用允许的最大送风温 差,调节空调机组的送风量,控制室内温度。使用变风量调节方法时,送风量不 能被调得过小, 以免引起室内气流组织恶化和正压降低, 影响空调效果。 同时应 保证系统的最小新风量。 当送风机改变送风量时, 根据室内压力监测值调节回排 风机的风量,维持一定的室内正压。风机风量减少时,风机的功率随之降低,极 大地降低设备的运行能耗,达到节能目的,节约运行成本。当室内湿负荷变化时, 可调节表冷器的电动二通阀开度, 通过改变表冷器的 冷冻水流量,从而改变露点控制室内湿度。3实用控制策略在实际运营中对空调系统可采取较实用的控制原则和控制策略:变风量控制室内温度、变露点控制室内湿度;当空调回风温度Tr27.5C时,调节表冷器的电动二通阀开度,保证露点温 度;当空调回风温度Tr27.5C时,调节空调机组的送风量,控制室内温度在允 许的范围内。2) 空调季节全新风工况当室外空气焓值小于或等于车站回风空气焓值:即IwIr时,这时开始进入夏季或秋季,是过渡季节。由于回风焓值总是高于室外空气焓值,所以,如 果利用回风,则其与新风混合后的空气焓值一定比新风的焓值高, 必然增加空调 机的负荷。为了节约能量,空调系统采用全新风降温除湿工况。采用此工况时,EMCS系统关闭回风阀门, 打开新风阀门,全部采用室外新风,经表冷器冷却后 送风,表冷器的空气处理过程是降温除湿过程(湿工况)。空调器处理室外新风 后送至空调区域,排风则全部排至车站外。室外空气状态和室内热湿负荷变化时的调节方法同空调季节小新风工况。3) 非空调季节工况当室外空气温度小于或等于车站空调送风温度,即TwTo时,进而冬季,采用通风工况。停止冷水机组运行, 外界运行不经冷却处理直接送至车站公共区,排风则全部排出车站外界(4)车站公共区全年空调通风工况转换汇总表:表B1-2/09表B1-2/09转换前工况工况转换可能性工况转换条件空调通风工况小新风 工况全新风工况Iw Ir由全新风降温除湿工况转换至最小 新风量降温除湿工况工况通风Iw Ir, Tw 弐 o由全新风降温除湿工况转换至通风 工况非空调季节通风全新风工况Iw To由通风工况转换至全新风降温除湿 工况(5)焓值计算空调通风系统工况转换的关键是室内、 外空气焓值的计算和比较判断。系统 检测的是空气的干球温度和相对湿度信号。空气的焓值是由空气温湿度决定的, 而温湿度每时每刻都在变化,因此焓值也随之变化。但是由于车站公共区空间较 大,因此空气状态变化缓慢,属于大滞后环节。为了防止工况在一天内频繁转换, 系统计算0.51小时内(时间可设定)焓值的平均值,定期进行模式的控制和 工况的转换控制。焓值计算方法如下所示:T=273.15+tIn (Pq,b)=C8/T+C9+C10T+C1仃2+C12T3+C13I n(T)C8 = -5800.2206C9 = 1.3914993C10 = -0.04860239C11 = 0.41764768X10-4C12 = -0.14452093X10-7C13 = 6.5459673= Pq/Pq,bd = 622 Pq/(B- Pq) i = 1.01t+0.001d(2501+1.84t)符号说明:t:空气干球温度,单位C;T:绝对温标,单位K;Pq,b:该温度下饱和水蒸气分压力,单位Pa;Pq:该温度下空气水蒸气分压力,单位Pa;B:实际的大气压力,单位Pa;:空气相对湿度;d:空气含湿量,单位g/kg干空气;i:空气焓,单位kJ/kg干空气。2车站大系统变风量控制变风量系统(VAV)本世纪60年代诞生在美国,现已经成为美国空调系统 的主流,并在其他国家也得到应用。VAV技术的基本原理很简单,就是通过改 变送入室内风量来满足室内变化的负荷。由于空调系统大部分时间在部分负荷下 运行,所以,风量的减少带来了风机能耗的降低。VAV系统追求以较少的能耗来满足室内空气环境的要求。(1)送风量调节图B1-2/14为一典型的VAV系统:VJ新风空调机组rnLrn irn1ri iROOM1ROOM2ROOM3ROOM4ROOMn变风量装置VO排风图B1-2/14一般楼宇的VAV系统主要的特点就是每个房间的送风入口处装一个VAV末端装置,该末端装置实际上是一个风阀或变频调速风机。调整风阀的阀位或风 机的转速以增大/减少送入房间的风量,从而实现增加或减少对房间冷量的供应。 当一套全空气空调系统所带房间的负荷变化情况彼此不同,或各房间要求的设定值彼此不同时,VAV是一种解决问题的有效方式。每个VAV末端装置需要一套PID回路调节。最简单的控制方式是根据房间温度实测值与设定值之差,直接调整末端装置中的风阀。这样做,当某个房间温度达到要求值时,由于其它房间风 量的变化或总的送风机风量有所变化导致连接末端装置风道处的空气压力有变 化,从而使这个房间的风量变化。由于房间热惯性较大,在此瞬间房间温度并不 变化。待房间温度发生足够大的变化后,再对风阀进行调整,又会反过来影响其 它房间的风量,并引起温度变化,这样各房间风阀不断调节,风量和温度不断变 化,导致系统不稳定。一种改进的方法是采用“压力无关”的末端装置。此种末 端上装有风量测量装置,房间温度的变化不再直接改变风阀开度, 而是去修正风 量设定值。风阀则根据实测的风量与风量设定值进行调整。 这样,当某房间风量 由于风道内压力变化而变化时,PID回路调节会直接调整风阀,以维持原来的风 量,房间温度不会由此引起波动。图B1-2/15为广州地铁五号线车站大系统的VAV系统示意图图B1-2/15可以看出广州地铁站大系统的VAV系统和以往的VAV系统相比,具有一 定的特殊性,这个特殊性为我们的系统带来了极大的简化。其调节的房间是站厅 和站台,由于站厅和站台相通,因此采用一个PID回路调节,可认为调节的房间只有一个。这样,就不会出现上面多房间调节所说的因为压力的变化而导致的 不稳定,所以我们没有必要去考虑风量的测量, 我们可以直接认为风量只和风机 的转速有关(其论证方法参见关于图B1-2/19A的论证),具体风量公式参见回 排风控制的方法一。新 风芯0空调机组变频风机变频风机(2)回风机的控制地铁车站大系统VAV还应保证车站里不会出现太大的负压或正压,因此,回风机的转速也需要调节使回风量与变化的送风量相匹配。回风量调节方法有方法一,在送风道和回风道分别安装一个压力变送器,具体算法如下表B1-2/10:参数:(注意,KQ的设定值必须大于1)表B1-2/10:参数名称参数代号已知/未知/待求常量/ 变量备注送风量SF Q未知变量排风量PF Q未知变量送排风量比KQ已知常量人为设定(比如:10:9 )送风口压力SF P1未知变量压力变送器测出排风口压力PF P1未知变量压力变送器测出送排风口压力比KP1已知变量KP1= SF P1/ PF P1送风机(空调机组)功率SF P2已知常量排风机功率PF P2已知常量送排风机功率比KP2已知常量送风机(空调机组)转速SF V已知变量PID 调节的结果排风机转速PF V待求变量送排风机转速比KV待求变量2)送排风量与各参数关系(K为常量)SF_Q=IK SF_P1XSF_P2SF_VPF_Q=IK PF_P伙PF_P2PF_VKQ= SF_Q/ PF_QKP1=SF_P1/ PF_P1KP2=SF_P2/ PF_P2KV= SF_V/ PF_VKQ= KP1XKP2XKV送风量与各参数关系:排风量与各参数关系:3)计算送排风量比:送排风口压力比:送排风机功率比:送排风机转速比:由上式可得:KV=KQ/(KP1XKP2)= SF_V/ PF_V因此:PF_V=(KPKKP2/ KQ) XSF_V(公式2-1)回路调节如图B1-2/16示:图B1-2/16方法二:在室内安装一个压力变送器,具体算法是通过回路调节,保证室内稍有正压。回路调节如图B1-2/17示:排风量.布尔量设定手动调节设定值数值参数设定过程变量M二布尔量输出比例积分微分调节器HI 值限幅自动/手动切换动作死区程序/操作员设定权过程变量报警偏差过程变量超高报警偏差回路参数设定执行机构建议广州地铁五号线设风量或风压检测装置,应用上述的方法之一。如果广州地铁不设风量或压力检测装置。此时,不能直接按照室内压力对回风机进行控制,由于送风机在维持送风道中的静压,其工作点如图B1-2/18(定出口压力时风机工况的变化)那样随转速变化而变化,送风量并非与转速成正比。 而回风道中如果没有可随时调整的风阀, 回风量基本上与回风机转速成正比。 因 此不能简单地让回风机与送风机同步地改变转速。 实际工程中可行的方法是同时 测量总送风量和总回风量,调整回风机转速使总回风量总是略低于总送风量,即可维持各房间稍有正压。室内压力高限报警室内压力超高限报警室内压力设定=标压+正压图B1-2/18G2G1G0总风量降压处组机调空卧力压口出机风送在这种工程环境下,我们可以忽略风压,采用“随动”的方法来实现(即排 风机转速按比例随送风机转速动作),为什么可以忽略风压?请参见图B1-2/19A的实验结果(图B1-2/19A、图B1-2/19B、图B1-2/19C是以往工程中空调系统 的实验结果),然后再作具体分析。140001200010000600040002000尿速(mm500700900110013001500图B1-2/19A(风量和转速关系实验结果)图B1-2/19B(风机定风量控制时的转速调节曲线)图B1-2/19C(风机定风量控制时压力曲线)图B1-2/19A中,模拟通过置末端风阀为全开位,改变风机转速,得到一系 列系统总风量与转速的对应关系,从图中也可以清楚地看出两者之间的正比关系。广州地铁大系统的末端没有这些风阀限制,因此可以认为和上述实验结果类 似。综上所述, 我们得到了一个很重要的结论: 那就是风道的阻力特性变化不大 的情况下,可以认为风量与风机转速成正比关系。再看图B1-2/19B和图B1-2/19C,这是模拟恒定风量时的转速和压力曲线, 恰好证明了我们的结论的准确性。具体算法如下:控制回风机转速与送风机转速同时按比例变化。 这时,风道内静压不是恒定 而是随风量变化,但风道的阻力特性变化不大,送风机的工作点变化不大,因此 送风机风量近似与转速成正比,于是回风机转速即可与送风机同步。由于总风量 近似正比于送风机转速,由此可估计出不同转速下所需要的最小新风比, 以保证 系统有足够的新风量,用这个最小新风量即可作为新排风机此时刻转速的下限。具体公式算法见公式2-1, 即卩PF_V=(KPXKP2/ KQ)XSF_V,如果忽略压力 的影响,那么KP1=1,所以PF_V=(KP2/ KQ)XSF_V0令a= KP2/ KQ,那么PF_V=XSF_V,即排风机的转速随送风机的转速按比例随动o.s0.0005010015)200 SO XO 35040Q上述控制效果当然不如带有风量或风压测量装置的系统, 计恰当,变频风机选择合适,一样可以获得较好的运行品质。 风机在不同控制方式下性能曲线图,仅供参考)但如果送回风道设(图B1-2/20是某具体送风机调速回路如图B1-2/21示:室温反馈室温低限报警室温超低限报警送风机转速手动调节送风机转速调节室温高限报警室温超高限报警室温设定A图B1-2/21四设计及调试空调系统的注意事项1 压差平衡阀应该作为重点调节, 它关系到整个空调系统的调节效果, 因此压差变送器的准确性必须保证;(压差过大,会浪费冷量;压差过小, 不能保证远方末端的压头供应,导致无法调节空气品质);2 尽量避免多变量串级调节,可以通过比例的方法把多变量的串级回 路分解成单变量回路调节;3 在整定PID参数时,尽量采用自动周期整定,周期设定不要太长,以保证调节需求为佳 (这种方法在深圳地铁一期中应用很成功, 效果极佳) ;4 必须通过调节保证室内压力稍为正压,正压过大会导致大量冷量损 失,负压会导致室外的热负荷涌入室内;5 室内温湿度变送器安装的位置很重要,一般情况下安装高度为1.4米为适宜高度,且不应安装在送风或排风口附近,更不能安装在发热设备附 近;(譬如深圳地铁某车站小系统车控室的温室度传感器安装在一台发热量 很大的控制柜上方,导致调试效果差);6 变风量控制的空调要设定转速上下限,下限用来保证室内的新风供 应,上限用来节省能量,因为根据风机的曲线特性可知工频不节能。7 流量变送器和冷冻水出水入水口的温度变送器也一定要准确,否则 冷水机组台数控制缺乏依据,导致冷量供应不能保证。流量传感器的位置更 为重要,一般安装在离分流处1.2米以外,以防涡流造成影响。 五空调系统的核心(模糊PID算法的应用及调试方法)1. .PID(Proportio nal, I ntegral a nd Derivative)介绍PID控制问世至今已有近70年历史,它以其结构简单、稳定性好、工作可 靠、调整方便而成为工业控制的主要技术之一。 当被控对象的结构和参数不能完 全掌握,或得不到精确的数学模型时, 控制理论的其它技术难以采用时, 系统控 制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最 为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段 来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制就是根据系统的误差,利用 比例、积分、微分计算出控制量进行控制的。目前PID控制在工业控制系统中无处不见,随着控制效果的要求不断提高,PID逐渐向智能化发展, 但形形色色 “时髦”的现代控制理论中的PID最终还是 源自经典PID理论。为什么PID应用如此广泛、又长久不衰?是因为PID解决了自动控制 理论所要解决的最基本问题,既系统的稳定性、快速性和准确性。调节PID的 参数,可实现在系统稳定的前提下,兼顾系统的带载能力和抗扰能力,同时,在PID调节器中引入积分项, 系统增加了一个零积点, 使之成为一阶或一阶以上的 系统,这样系统阶跃响应的稳态误差就为零。由于自动控制系统被控对象的千差万别,PID的参数也必须随之变化, 以满足系统的性能要求。这就给使用者带来相当的麻烦目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。 同时,控制理论的发展也经历了古典控制理论、 现代控制理论和智慧控制理论三 个阶段。智能控制的典型实例是模糊全自动洗衣机等。 自动控制系统可分为开环 控制系统和死循环控制系统。一个控制系统包括控制器、传感器、变送器、执行 机构、输入输出接口。控制器的输出经过输出接口、执行机构,加到被控系统上;控制系统的被控量,经过传感器,变送器,通过输入接口送到控制器。不同的控制系统,其传感器、变送器、执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。目前,PID控制及 其控制器或智慧PID控制器(仪表)已经很多,产品已在工程实际中得到了广 泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自 整定功能的智能调节器(intelligentregulator),其中PID控制器参数的自动调整是 通过智慧化调整或自校正、自适应算法来实现。有利用PID控制实现的压力、 温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。 可编程控制器(PLC)是利用其死循环控制模块 来实现PID控制。2PID原理2.1名词解释2.1.1开环控制系统开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控 制器(con troller)的输出没有影响。在这种控制系统中,不依赖将被控量反送回来 以形成任何死循环回路。2.1.2闭环控制系统(又称死循环控制系统)闭环控制系统(closed-loop control system)的特点是系统被控对象的输出(被 控制量)会反送回来影响控制器的输出,形成一个或多个死循环。2.1.3正反馈和负反馈死循环控制系统有正反馈和负反馈, 若反馈信号与系统给定值信号相反, 则 称为负反馈( Negative Feedback,)若极性相同,则称为正反馈,一般死循环控制 系统均采用负反馈, 又称负反馈控制系统。 死循环控制系统的例子很多。 比如人 就是一个具有负反馈的死循环控制系统, 眼睛便是传感器, 充当反馈, 人体系统 能通过不断的修正最后作出各种正确的动作。 如果没有眼睛,就没有了反馈回路, 也就成了一个开环控制系统。 另例,当一台真正的全自动洗衣机具有能连续检查 衣物是否洗净,并在洗净之后能自动切断电源,它就是一个死循环控制系统2.1.4阶跃响应阶跃响应是指将一个阶跃输入(step function)加到系统上时,系统的输出。 稳态误差是指系统的响应进入稳态后,系统的期望输出与实际输出之差。控制系统的性能可以用稳、准、快三个字来描述。稳是指系统的稳定性(stability),一个系统要能正常工作,首先必须是稳定的,从阶跃响应上看应该是收敛的;准是指 控制系统的准确性、控制精度,通常用稳态误差来(Steady-state error描述,它表示系统输出稳态值与期望值之差;快是指控制系统响应的快速性, 通常用上升时 间来定量描述。2.2 PID一般表达式2.2.1 PID模拟算法U(t)=P*e(t)+ 1/Ti*/Ote(t)dt+Td*de(t)/dt2.2.2 PID数字算法U(K)=P*e(K)-e(K-1)+Ts/Ti*e(K-1)+Td/Ts*e(K)-2e(K-1)+e(K-2)+U(K-1)其中:P为比例增益;Ti为积分时间;Td为微分时间;PID主要调节这三个参数。e(t)为输入误差;Ts为数字PID运算的采样周期。2.3 PID各参数在系统中的作用2.3.1比例调节1.调节作用快,系统一出现偏差,调节器立即将偏差放大1/P倍输出。2.系统存在余差比例带越大,过渡过程越平稳,但余差越大,比例带越小,过渡过 程易振荡,比例带太小时,就可能出现发散振荡。比例控制是一种最简单的控制方式。 其控制器的输出与输入误差信号成比例 关系。当仅有比例控制时系统输出存在稳态误差(Steady-state erro)r。2.3.2积分调节积分调节作用的输出变化与输入偏差的积分成正比, 积分调节作用的输出不 仅取决与偏差信号的大小,还取决于偏差存在的时间,只要有偏差存在,尽管偏差可能很小,但它存在的时间越长,输出信号就越大,只有消除偏差,输出才停止变化在积分控制中, 控制器的输出与输入误差信号的积分成正比关系。 对一个自 动控制系统, 如果在进入稳态后存在稳态误差, 则称这个控制系统是有稳态误差 的或简称有差系b.在输出不振荡时,减小积分时间常数Ti统(System with Steady-state Erro)。 为了消除稳态误差, 在控 制器中必须引入 “积分项”。积分项对误差取决于时间的积分, 随着时间的增加, 积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推 动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。2.3.3微分调节微分调节的输出是与被调量的变化率成正比。 在比例微分调节作用下, 有时 尽管偏差很小,但其变化速度很快,则微分调节器就有一个较大的输出。在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率) 成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差 的作用,其变化总是落后于误差的变化。 解决的办法是使抑制误差的作用的变化 “超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制 器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目 前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器, 就能够提前使抑制误差的控制作用等于零, 甚至为负值, 从而避免了 被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。3PID参数的整定方法PID参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID参数整定的方法很多, 概括起来有两大类: 一是理论计算整定法, 它主要是依据系统的数学模型, 经过 理论计算确定控制参数。 这种方法所得到的计算数据未必可以直接用, 还必须通 过工程实际进行调整和修改; 二是工程整定法, 它主要依赖工程经验, 直接在控 制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。3.1 PID参数的整定原则a在输出不振荡时,增大比例增益P。C.在输出不振荡时,增大微分时间常数Td。3.2 PID参数工程整定法详细参见程例。3.3 PID参数理论计算整定法PID控制器参数的工程整定方法, 主要有临界比例法、反应曲线法和衰减法。 三种方法各有其特点, 其共同点都是通过试验, 然后按照工程经验公式对控制器 参数进行整定。 但无论采用哪一种方法所得到的控制器参数, 都需要在实际运行 中进行最后调整与完善。现在一般采用的是临界比例法。利用该方法进行PID控制器参数的整定步骤如下:方法一:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下 这时的比例放大系数Kp0和临界振荡周期Ts;(3)在一定的控制度下通过公式计算得到PID控制器的参数。Kp= Kp0控制精度=1.05%,则设置Ti=0.49Ts;Td=0.14Ts;T=0.014控制精度=1.2%,则设置Ti=0.47Ts;Td=0.16Ts;T=0.043控制精度=1.5%,则设置Ti=0.43Ts;Td=0.20Ts;T=0.09方法二:(1)确定比例增益P确定比例增益P时,首先去掉PID的积分项和微分项, 一般是令Ti=0、Td=0(具体见PID的参数设定说明),使PID为纯比例调节。输入设定为系统允许 的最大值的60%70%,由0逐渐加大比例增益P,直至系统出现振荡;再反过 来,从此时的比例增益P逐渐减小,直至系统振荡消失,记录此时的比例增益P, 设定PID的比例增益P为当前值的60%70%。比例增益P调试完成。(2)确定积分时间常数Ti比例增益P确定后,设定一个较大的积分时间常数Ti的初值,然后逐 渐减小Ti,直至系统出现振荡,之后在反过来,逐渐加大Ti,直至系统振荡消 失。记录此时的Ti,设定PID的积分时间常数Ti为当前值的150%180%。积分时间常数Ti调试完成(3)确定积分时间常数Td积分时间常数Td一般不用设定,为0即可。若要设定,与确定P和Ti的方法相同,取不振荡时的30%。(4)系统空载、带载联调,再对PID参数进行微调,直至满足要求。方法三(经验值法)在实际调试中,也可以先大致设定一个经验值,然后根据调节效果修改。对于温度系统:P(%)20-60,I(分)3-10,D(分)0.5-3对于流量系统:P(%)40-100,I(分)0.1-1对于压力系统:P(%)30-70,I(分)0.4-3对于液位系统:P(%)20-80,I(分)154结论总之,在整定时不能让系统出现发散振荡。 如出现发散振荡, 应立即切为手 动,等系统稳定后增大比例带、积分时间或减小微分时间,重新切换到自动。比例带越大,过渡过程越平稳,但余差越大。比例带越小,过渡过程容易发 生振荡。积分时间越小,消除余差就越快,但系统振荡会较大,积分时间越大, 系统消除余差的速度较慢。微分时间太大,系统振荡次数增加,调节时间增加, 微分太小,系统调节缓慢。一句话:整定参数时要认真观察系统输出及被调量的变化情况, 再根据具体 情况适当修改PID参数。可以说,大多数控制系统采用PID调节都能满足要求。附录:深圳地铁一期空调系统实例:深圳地铁一期空调有2个站采用定风温变风量控制方案, 其他均为变风温定 风量控制方案。不管是哪种方案均采用了参数周期整定的PID进行控制的,其PID设计框 架是这样的:执行机构的动作分为手动和自动两种: 当在手动控制方式下, 是靠人工去选 择执行机构的开度或频率;当在自动控制方式下,是靠PID自动运算出执行机 构的开度或频率。PID参数在周期自动整定,但只有在自动方式下才能执行PID参数的加载,PID参数加载提供三种不同的加载方式:1人工整定参数人工整定参数就是在人机界面上提供了一些手动设定参数的接口,以便在线设定或修改PID参数,方便工程师进行系统维护。此功能正常情况下一般不用。2.默认参数默认参数是系统提供的一套相对比较合理的缺省参数,这套参数应急是使用 的,此功能正常情况下一般不用。如果工程师在人工整定参数时, 误把严重不合 理的参数下载到PID中之后,使得调节发散无法恢复正常调节时,可以启用此 功能恢复调节系统。3自动整定参数自动整定参数是系统周期性自动整定PID参数,周期性修正后加载,系统整定周期次数越多,参数越精确,系统运行就越稳定,调节效果就会更好。这个 功能是系统处于正常情况下实时使用的。除了这些功能外,系统还做了一个二通阀开度的数据库, 这个数据库把近几 天二通阀开度采样后作平均,得出一天内的阀位曲线,采样周期是30分钟。以 防止PID调节效果欠佳时使用。这个功能是阀位曲线设定结合PID为一体的调 节方法,具体参见下图:下面具体介绍一下这两种方案:一.变风量系统按道理说变风量应该是2变量调节,为了尽量避免串级回路,所以把这个2变量回路分解成了2个单变量回路,然后再用比例把这两个回路串接在一起, 形 成一个变风温变风量系统。其中风回路是利用室内实际温度调节风量实现室内恒 温的,水回路是利用实际送风温度调节水阀开度来实现送风温度与给定值一致 的。二.定风量系统此系统是直接利用室内实际温度调节二通阀(水阀)来实现室内温度恒定的。
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 压缩资料 > 基础医学


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!