资源描述
1.【2012高考真题重庆理3】任意的实数k,直线与圆的位置关系一定是(1) 相离 B.相切 C.相交但直线不过圆心 D.相交且直线过圆心2.【2012高考真题浙江理3】设aR ,则“a1”是“直线l1:ax+2y=0与直线l2 :x+(a+1)y+4=0平行 的A 充分不必要条件 B 必要不充分条件 C 充分必要条件 D 既不充分也不必要条件【答案】A【解析】当时,直线:,直线:,则/;若/,则有,即,解之得,或,所以不能得到。故选A.4.【2012高考真题陕西理4】已知圆,过点的直线,则( )A.与相交 B. 与相切 C.与相离 D. 以上三个选项均有可能5.【2012高考真题天津理8】设,若直线与圆相切,则m+n的取值范围是(A) (B) (C) (D)【答案】D【解析】圆心为,半径为1.直线与圆相切,所以圆心到直线的距离满足,即,设,即,解得或6.【2012高考江苏12】(5分)在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆有公共点,则的最大值是 8.【2012高考真题湖南理21】(本小题满分13分)在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2y2=9外,且对C1上任意一点M,M到直线x=2的距离等于该点与圆C2上点的距离的最小值.()求曲线C1的方程;()设P(x0,y0)(y03)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:当P在直线x=4上运动时,四点A,B,C,D的纵坐标之积为定值.解法2 :由题设知,曲线上任意一点M到圆心的距离等于它到直线的距离,因此,曲线是以为焦点,直线为准线的抛物线,故其方程为.设过P所作的两条切线的斜率分别为,则是方程的两个实根,故 由得 【2011年高考试题】一、选择题:1(2011年高考江西卷理科9)若曲线:与曲线:有四个不同的交点,则实数m的取值范围是 A(,) B(,0)(0,) c, D(,)(,+)二、填空题:1.(2011年高考安徽卷理科15)在平面直角坐标系中,如果与都是整数,就称点为整点,下列命题中正确的是_(写出所有正确命题的编号).存在这样的直线,既不与坐标轴平行又不经过任何整点如果与都是无理数,则直线不经过任何整点直线经过无穷多个整点,当且仅当经过两个不同的整点直线经过无穷多个整点的充分必要条件是:与都是有理数存在恰经过一个整点的直线2.(2011年高考重庆卷理科15)设圆位于抛物线与直线所组成的封闭区域(包含边界)内,则圆的半径能取到的最大值为 三、解答题:1. (2011年高考山东卷理科22)(本小题满分14分)已知动直线与椭圆C: 交于P、Q两不同点,且OPQ的面积=,其中O为坐标原点.()证明和均为定值;()设线段PQ的中点为M,求的最大值;()椭圆C上是否存在点D,E,G,使得?若存在,判断DEG的形状;若不存在,请说明理由. (2)当直线的斜率存在时,设直线的方程为由题意知m,将其代入,得,综上所述,结论成立。 (II)解法一: (1)当直线的斜率存在时,由(I)知因此 (2)当直线的斜率存在时,由(I)知解法二:由(I)得2. (2011年高考广东卷理科19)设圆C与两圆中的一个内切,另一个外切.(1)求C的圆心轨迹L的方程.(2)已知点且P为L上动点,求的最大值及此时点P的坐标.【解析】(1)解:设C的圆心的坐标为,由题设条件知化简得L的方程为 (2)解:过M,F的直线方程为,将其代入L的方程得解得3(2011年高考福建卷理科17)(本小题满分13分)已知直线l:y=x+m,mR。(I)若以点M(2,0)为圆心的圆与直线l相切与点P,且点P在y轴上,求该圆的方程;(II)若直线l关于x轴对称的直线为,问直线与抛物线C:x2=4y是否相切?说明理由。(1)当时,直线与抛物线C相切(2)当,那时,直线与抛物线C不相切。综上,当m=1时,直线与抛物线C相切;当时,直线与抛物线C不相切。4(2011年高考上海卷理科23)(18分)已知平面上的线段及点,在上任取一点,线段长度的最小值称为点到线段的距离,记作。(1)求点到线段的距离;(2)设是长为2的线段,求点集所表示图形的面积;(3)写出到两条线段距离相等的点的集合,其中,是下列三组点中的一组。对于下列三组点只需选做一种,满分分别是2分,6分,8分;若选择了多于一种的情形,则按照序号较小的解答计分。 。 。 。解: 设是线段上一点,则,当时,。【2010年高考试题】(2010江西理数)8.直线与圆相交于M,N两点,若,则k的取值范围是A. B. C. D. 【答案】A1. (2010安徽理数)9、动点在圆上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周。已知时间时,点的坐标是,则当时,动点的纵坐标关于(单位:秒)的函数的单调递增区间是A、B、C、D、和9.D【解析】画出图形,设动点A与轴正方向夹角为,则时,每秒钟旋转,在上,在上,动点的纵坐标关于都是单调递增的。【方法技巧】由动点在圆上绕坐标原点沿逆时针方向匀速旋转,可知与三角函数的定义类似,由12秒旋转一周能求每秒钟所转的弧度,画出单位圆,很容易看出,当t在变化时,点的纵坐标关于(单位:秒)的函数的单调性的变化,从而得单调递增区间.(2010全国卷2理数)(16)已知球的半径为4,圆与圆为该球的两个小圆,为圆与圆的公共弦,若,则两圆圆心的距离 (2010四川理数)(14)直线与圆相交于A、B两点,则 .(2010广东理数)12.已知圆心在x轴上,半径为的圆O位于y轴左侧,且与直线x+y=0相切,则圆O的方程是 12设圆心为,则,解得(2010山东理数)【解析】由题意,设所求的直线方程为,设圆心坐标为,则由题意知:,解得或-1,又因为圆心在x轴的正半轴上,所以,故圆心坐标为(3,0),因为圆心(3,0)在所求的直线上,所以有,即,故所求的直线方程为。【命题意图】本题考查了直线的方程、点到直线的距离、直线与圆的关系,考查了同学们解决直线与圆问题的能力。(2010湖南理数)2. (2010江苏卷)9、在平面直角坐标系xOy中,已知圆上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是_ 解析考查圆与直线的位置关系。 圆半径为2,圆心(0,0)到直线12x-5y+c=0的距离小于1,的取值范围是(-13,13)。【2009年高考试题】4.(2009辽宁文、理)已知圆C与直线xy0 及xy40都相切,圆心在直线xy0上,则圆C的方程为(A) (B) (C) (D) 16(200918)(本小题满分16分)在平面直角坐标系中,已知圆和圆.(1)若直线过点,且被圆截得的弦长为,求直线的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标。化简得:关于的方程有无穷多解,有:解之得:点P坐标为或。 【2008年高考试题】 【2007年高考试题】无 希望对大家有所帮助,多谢您的浏览!
展开阅读全文