新编高考理科导学案【第五章】平面向量 学案23

上传人:仙*** 文档编号:62344763 上传时间:2022-03-14 格式:DOC 页数:9 大小:271KB
返回 下载 相关 举报
新编高考理科导学案【第五章】平面向量 学案23_第1页
第1页 / 共9页
新编高考理科导学案【第五章】平面向量 学案23_第2页
第2页 / 共9页
新编高考理科导学案【第五章】平面向量 学案23_第3页
第3页 / 共9页
点击查看更多>>
资源描述
新编高考数学复习资料第五章 解三角形与平面向量 学案23正弦定理和余弦定理导学目标: 1.利用正弦定理、余弦定理进行边角转化,进而进行恒等变换解决问题.2.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题自主梳理1三角形的有关性质(1)在ABC中,ABC_;(2)ab_c,abbsin A_sin BA_B;(4)三角形面积公式:SABCahabsin Cacsin B_;(5)在三角形中有:sin 2Asin 2BAB或_三角形为等腰或直角三角形;sin(AB)sin C,sin cos .2正弦定理和余弦定理定理正弦定理余弦定理内容_2Ra2_,b2_,c2_.变形形式a_,b_,c_;sin A_,sin B_,sin C_;abc_;cos A_;cos B_;cos C_.解决的问题已知两角和任一边,求另一角和其他两条边已知两边和其中一边的对角,求另一边和其他两角已知三边,求各角;已知两边和它们的夹角,求第三边和其他两个角.自我检测1(2010上海)若ABC的三个内角满足sin Asin Bsin C51113,则ABC()A一定是锐角三角形B一定是直角三角形C一定是钝角三角形D可能是锐角三角形,也可能是钝角三角形2(2010天津)在ABC中,内角A,B,C的对边分别是a,b,c,若a2b2bc,sin C2sin B,则A等于 ()A30B60C120D1503(2011烟台模拟)在ABC中,A60,b1,ABC的面积为,则边a的值为()A2B.C.D34(2010山东)在ABC中,角A,B,C所对的边分别为a,b,c.若a,b2,sin Bcos B,则角A的大小为_5(2010北京)在ABC中,若b1,c,C,则a_.探究点一正弦定理的应用例1(1)在ABC中,a,b,B45,求角A、C和边c;(2)在ABC中,a8,B60,C75,求边b和c.变式迁移1(1)在ABC中,若tan A,C150,BC1,则AB_;(2)在ABC中,若a50,b25,A45,则B_.探究点二余弦定理的应用例2(2011咸宁月考)已知a、b、c分别是ABC中角A、B、C的对边,且a2c2b2ac.(1)求角B的大小;(2)若c3a,求tan A的值变式迁移2在ABC中,a、b、c分别为A、B、C的对边,B,b,ac4,求a.探究点三正、余弦定理的综合应用例3在ABC中,a、b、c分别表示三个内角A、B、C的对边,如果(a2b2)sin(AB)(a2b2)sin(AB),试判断该三角形的形状变式迁移3(2010天津)在ABC中,.(1)证明:BC;(2)若cos A,求sin的值1解斜三角形可以看成是三角变换的延续和应用,用到三角变换的基本方法,同时它是对正、余弦定理,三角形面积公式等的综合应用2在利用正弦定理解已知三角形的两边和其中一边的对角,求另一边的对角,进而求出其他的边和角时,有可能出现一解、两解或无解的情况,应结合图形并根据“三角形中大边对大角”来判断解的情况,作出正确取舍3在解三角形中的三角变换问题时,要注意两点:一是要用到三角形的内角和及正、余弦定理,二是要用到三角变换、三角恒等变形的原则和方法“化繁为简”“化异为同”是解此类问题的突破口 (满分:75分)一、选择题(每小题5分,共25分)1(2010湖北)在ABC中,a15,b10,A60,则cos B等于 ()AB.CD.2.在ABC中AB3,AC=2,BC=,则等于 ()ABC.D.3在ABC中,sin2(a,b,c分别为角A,B,C的对边),则ABC的形状为()A正三角形B直角三角形C等腰直角三角形D等腰三角形4(2011聊城模拟)在ABC中,若A60,BC4,AC4,则角B的大小为()A30B45C135D45或1355(2010湖南)在ABC中,角A,B,C所对的边长分别为a,b,c,若C120,ca,则 ()AabBa(3)(4)bcsin A(5)AB2.b2c22bccos Aa2c22accos Ba2b22abcos C2Rsin A2Rsin B2Rsin Csin Asin Bsin C自我检测1C2.A3.C4.5.1课堂活动区例1解题导引已知三角形的两边和其中一边的对角,可利用正弦定理求其他的角和边,但要注意对解的情况进行判断,这类问题往往有一解、两解、无解三种情况具体判断方法如下:在ABC中已知a、b和A,求B.若A为锐角,当ab时,有一解;当absin A时,有一解;当bsin Aab时,有两解;当ab时,有一解;当ab时,无解解(1)由正弦定理得,sin A.ab,AB,A60或A120.当A60时,C180456075,c;当A120时,C1804512015,c.综上,A60,C75,c,或A120,C15,c.(2)B60,C75,A45.由正弦定理,得b4,c44.b4,c44.变式迁移1(1)(2)60或120解析(1)在ABC中,tan A,C150,A为锐角,sin A.又BC1.根据正弦定理得AB.(2)由ba,得BA,由,得sin B,0B180B60或B120.例2解(1)a2c2b2ac,cos B.0B,B.(2)方法一将c3a代入a2c2b2ac,得ba.由余弦定理,得cos A.0Aa,BA,cos A.tan A.方法三c3a,由正弦定理,得sin C3sin A.B,C(AB)A,sin(A)3sin A,sincos Acossin A3sin A,cos Asin A3sin A,5sin Acos A,tan A.变式迁移2解由余弦定理得,b2a2c22accos Ba2c22accosa2c2ac(ac)2ac.又ac4,b,ac3,联立,解得a1,c3,或a3,c1.a等于1或3.例3解题导引利用正弦定理或余弦定理进行边角互化,转化为边边关系或角角关系解方法一(a2b2)sin(AB)(a2b2)sin(AB)a2sin(AB)sin(AB)b2sin(AB)sin(AB),2a2cos Asin B2b2cos Bsin A,由正弦定理,得sin2Acos Asin Bsin2Bcos Bsin A,sin Asin B(sin Acos Asin Bcos B)0,sin 2Asin 2B,由02A2,02B2,得2A2B或2A2B,即ABC是等腰三角形或直角三角形方法二同方法一可得2a2cos Asin B2b2cos Bsin A,由正、余弦定理,即得a2bb2a,a2(b2c2a2)b2(a2c2b2),即(a2b2)(c2a2b2)0,ab或c2a2b2,三角形为等腰三角形或直角三角形变式迁移3解题导引在正弦定理2R中,2R是指什么?a2Rsin A,b2Rsin B,c2Rsin C的作用是什么?(1)证明在ABC中,由正弦定理及已知得.于是sin Bcos Ccos Bsin C0,即sin(BC)0.因为BC,从而BC0.所以BC.(2)解由ABC和(1)得A2B,故cos 2Bcos(2B)cos A.又02B,于是sin 2B.从而sin 4B2sin 2Bcos 2B,cos 4Bcos22Bsin22B.所以sinsin 4Bcos cos 4Bsin .课后练习区1D2.D3.B4.B5.A6等边三角形解析b2a2c22accos B,aca2c2ac,(ac)20,ac,又B60,ABC为等边三角形71解析由AC2B及ABC180知,B60.由正弦定理知,即sin A.由ab知,AB,A30,C180AB180306090,sin Csin 901.8.解析设BAD,DAC,则tan ,tan ,tanBACtan()1.BAC为锐角,BAC的大小为.9解(1)因为cos,所以cos A2cos21,sin A.(4分)又由3得bccos A3,所以bc5,因此SABCbcsin A2.(8分)(2)由(1)知,bc5,又bc6,由余弦定理,得a2b2c22bccos A(bc)2bc20,所以a2.(12分)10解在ADC中,AD10,AC14,DC6,由余弦定理得,cosADC,(6分)ADC120,ADB60.(8分)在ABD中,AD10,B45,ADB60,由正弦定理得,AB5.(12分)11解(1)3b23c23a24bc,b2c2a2bc.由余弦定理得,cos A,(4分)又0A,故sin A.(6分)(2)原式(8分)(11分).所以.(14分)
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 管理文书 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!