资源描述
高考理科数学考点分类自测:数列的概念及简单表示法一、选择题1数列1,的一个通项公式an是()A. B.C. D.2已知数列an的前n项和为Sn,且Sn2(an1),则a2等于()A4 B2C1 D23数列an的a11,a(n,an),b(an1,n1),且ab,则a100等于()A100 B100C. D4已知数列an的前n项和Snkn2,若对所有的nN*,都有an1an,则实数k的取值范围是()Ak0 Bk1Ck1 Dk05已知数列an满足anan1(nN*),a22,Sn是数列an的前n项和,则S21为()A5 B.C. D.6若数列an满足a15,an1(nN*),则其前10项和为()A50 B100C150 D200二、填空题7数列an对任意nN*满足an1ana2,且a36,则a10等于_8根据下图5个图形及相应点的个数的变化规律,猜测第n个图中有_个点9若数列an满足,an1且a1,则a2008_.三、解答题10数列an中,a11,对于所有的n2,nN*都有a1a2a3ann2,求a3a5的值11已知数列an的前n项和为Sn.(1)若Sn(1)n1n,求a5a6及an;(2)若Sn3n2n1,求an.12设函数f(x)log2xlogx2(0x1),数列an满足f(2an)2n(nN*)(1)求数列an的通项公式;(2)判断数列an的单调性详解答案一、选择题1解析:由已知得,数列可写成,故通项为.答案:B2解析:在Sn2(an1)中,令n1,得a12;令n2,得a1a22a22,所以a24.答案:A3解析:ab0,则nan1(n1) an0,100,a100100.答案:A4解析:本题考查数列中an与Sn的关系以及数列的单调性由Snkn2得ank(2n1),因为an1an,所以数列an是递增的,因此k0.答案:A5解析:anan1,a22,a1,S21a1a2a20a21a1105.答案:B6解析:由an1得a2anan1a0,an1an,即an为常数列,S1010a150.答案:A二、填空题7解析:由已知,n1时,a2a1a2,a10;n2时,a3a2a26,a23;n3时,a4a3a29;n4时,a5a4a212;n5时,a6a5a215;n10时,a10a9a227.答案:278解析:观察图中5个图形点的个数分别为1,121,231,341,451,故第n个图中点的个数为(n1)n1n2n1.答案:n2n19解析:a22a1,a3a21,a42a3, a5a41,a62a5,a72a6,此数列周期为5,a2008a3.答案:三、解答题10解:由a1a2a3ann2,a1a24,a1a2a39,a3,同理a5.a3a5.11解:(1)a5a6S6S4(6)(4)2.当n1时,a1S11;当n2时,anSnSn1(1)n1n(1)n(n1)(1)n1n(n1)(1)n1(2n1)由于a1也适合于此式,所以an(1)n1(2n1)(2)当n1时,aS6;当n2时,anSnSn1(3n2n1)3n12(n1)123n12.由于a1不适合此式,所以an12解:(1)由已知得log22anlog2an22n,an2n,即a2nan10.解得ann.0x1,即02an120,an0,故ann(nN*)(2)1,而an0,an1an,即数列an是关于n的递增数列
展开阅读全文