资源描述
1 1 第一部分 20xx高考试题圆锥曲线1. 【20xx高考新课标1卷】已知方程表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是( )(A) (B) (C) (D)2.【20xx高考新课标2理数】圆的圆心到直线的距离为1,则a=( )(A) (B) (C) (D)23.【高考四川理数】设O为坐标原点,P是以F为焦点的抛物线 上任意一点,M是线段PF上的点,且=2,则直线OM的斜率的最大值为( )(A) (B) (C) (D)14.【20xx高考新课标2理数】已知是双曲线的左,右焦点,点在上,与轴垂直,,则的离心率为( )(A) (B) (C) (D)25.【20xx高考浙江理数】已知椭圆C1:+y2=1(m1)与双曲线C2:y2=1(n0)的焦点重合,e1,e2分别为C1,C2的离心率,则( )Amn且e1e21 Bmn且e1e21 Cm1 Dmn且e1e20),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A、B、C、D四点,四边形的ABCD的面积为2b,则双曲线的方程为( )(A) (B) (C) (D)11.【20xx高考江苏卷】如图,在平面直角坐标系中,是椭圆 的右焦点,直线 与椭圆交于两点,且,则该椭圆的离心率是 .12.【20xx高考天津理数】设抛物线,(t为参数,p0)的焦点为F,准线为l.过抛物线上一点A作l的垂线,垂足为B.设C(p,0),AF与BC相交于点E.若|CF|=2|AF|,且ACE的面积为,则p的值为_.13.【20xx高考山东理数】已知双曲线E: (a0,b0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是_.14.【高考北京理数】双曲线(,)的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点,若正方形OABC的边长为2,则_.15.【20xx高考江苏卷】在平面直角坐标系xOy中,双曲线的焦距是_. 16.【20xx高考新课标1卷】(本小题满分12分)设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(I)证明为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.17.【20xx高考山东理数】(本小题满分14分)平面直角坐标系中,椭圆C:的离心率是,抛物线E:的焦点F是C的一个顶点.(I)求椭圆C的方程;(II)设P是E上的动点,且位于第一象限,E在点P处的切线与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.(i)求证:点M在定直线上;(ii)直线与y轴交于点G,记的面积为,的面积为,求 的最大值及取得最大值时点P的坐标.18.【20xx高考江苏卷】(本小题满分16分)如图,在平面直角坐标系中,已知以为圆心的圆及其上一点(1)设圆与轴相切,与圆外切,且圆心在直线上,求圆的标准方程;(2)设平行于的直线与圆相交于两点,且,求直线的方程;(3)设点满足:存在圆上的两点和,使得,求实数的取值范围。19.【20xx高考江苏卷】(本小题满分10分)如图,在平面直角坐标系xOy中,已知直线,抛物线(1)若直线l过抛物线C的焦点,求抛物线C的方程;(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.求证:线段PQ的中点坐标为;求p的取值范围.20.【20xx高考天津理数】(本小题满分14分)设椭圆()的右焦点为,右顶点为,已知,其中 为原点,为椭圆的离心率.()求椭圆的方程;()设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线的斜率的取值范围.21.【20xx高考新课标3理数】已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点(I)若在线段上,是的中点,证明;(II)若的面积是的面积的两倍,求中点的轨迹方程.22.【20xx高考浙江理数】(本题满分15分)如图,设椭圆(a1).(I)求直线y=kx+1被椭圆截得的线段长(用a、k表示);(II)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.23.【20xx高考新课标2理数】已知椭圆的焦点在轴上,是的左顶点,斜率为的直线交于两点,点在上,()当时,求的面积;()当时,求的取值范围24.【高考北京理数】(本小题14分)已知椭圆C: ()的离心率为 ,的面积为1.(1)求椭圆C的方程;(2)设的椭圆上一点,直线与轴交于点M,直线PB与轴交于点N.求证:为定值.25.【高考四川理数】(本小题满分13分)已知椭圆E:的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线与椭圆E有且只有一个公共点T.()求椭圆E的方程及点T的坐标;()设O是坐标原点,直线l平行于OT,与椭圆E交于不同的两点A、B,且与直线l交于点P证明:存在常数,使得,并求的值.26.【20xx高考上海理数】(本题满分14) 有一块正方形菜地,所在直线是一条小河,收货的蔬菜可送到点或河边运走。于是,菜地分为两个区域和,其中中的蔬菜运到河边较近,中的蔬菜运到点较近,而菜地内和的分界线上的点到河边与到点的距离相等,现建立平面直角坐标系,其中原点为的中点,点的坐标为(1,0),如图(1) 求菜地内的分界线的方程;(2) 菜农从蔬菜运量估计出面积是面积的两倍,由此得到面积的“经验值”为。设是上纵坐标为1的点,请计算以为一边、另一边过点的矩形的面积,及五边形的面积,并判断哪一个更接近于面积的经验值.27. 【20xx高考上海理数】(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.双曲线的左、右焦点分别为,直线过且与双曲线交于两点。(1)若的倾斜角为,是等边三角形,求双曲线的渐近线方程;(2)设,若的斜率存在,且,求的斜率. 学科&网28.【20xx高考上海理数】已知平行直线,则的距离_.第二部分 20xx优质模拟试题1.【20xx湖北优质高中联考,理3】若是2和8的等比中项,则圆锥曲线的离心率是()ABC或D或2. 【20xx湖南六校联考,理12】已知分别为椭圆的左、右顶点,不同两点在椭圆上,且关于轴对称,设直线的斜率分别为,则当取最小值时,椭圆的离心率为( )A B C D3. 【20xx安徽合肥第一次质检,理16】存在实数,使得圆面恰好覆盖函数图象的最高点或最低点共三个,则正数的取值范围是_4. 【20xx安徽江南十校联考,理4】已知是双曲线的一条渐近线,是上的一点,是的两个焦点,若,则到轴的距离为(A) (B) (C) (D)5. 【20xx河北石家庄质检二,理9】已知直线与双曲线的两条渐近线分别交于,两点,若的中点在该双曲线上,为坐标原点,则的面积为()A BCD6. 【20xx湖南师大附中等四校联考,理13】若抛物线的准线经过双曲线的一个焦点,则_7.【20xx江西南昌一模,理16】已知抛物线C:x2 =4y的焦点为F,过点F且斜率为1的直线与抛物线相交于M,N两点设直线l是抛物线C的切线,且lMN,P为l上一点,则的最小值为_8【20xx江西师大附中、鹰潭一中一联,理20】已知抛物线C的标准方程为,M为抛物线C上一动点,为其对称轴上一点,直线MA与抛物线C的另一个交点为N当A为抛物线C的焦点且直线MA与其对称轴垂直时,MON的面积为18(1)求抛物线C的标准方程;(2)记,若t值与M点位置无关,则称此时的点A为“稳定点”,试求出所有“稳定点”,若没有,请说明理由9【20xx广东广州综合测试一,理20】已知椭圆的中心在坐标原点,焦点在轴上,左顶点为,左焦点为,点在椭圆上,直线与椭圆交于,两点,直线,分别与轴交于点,()求椭圆的方程;()以为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由
展开阅读全文