资源描述
对数的运算对数的运算 ?底数?对数?真数?幂?指数?底数?log?a?Nb?a?b?=N一般地,如果 1, 0aaa的b次幂等于N, 就是 Nab,那么数 b叫做以a为底 N的对数,记作 bNaloga叫做对数的底数,N叫做真数。定义:复习上节内容例如: 1642216log41001022100log102421212log401. 0102201. 0log10?底数?对数?真数?幂?指数?底数?log?a?Nb?a?b?=N复习上节内容有关性质: 负数与零没有对数(在对数式中 N 0 ) , 01loga1logaa对数恒等式NaNalog复习上节内容常用对数: 我们通常将以10为底的对数叫做常用对数。 为了简便,N的常用对数 N10log简记作lgN。 自然对数: 在科学技术中常常使用以无理数e=2.71828为底的对数,以e为底的对数叫自然对数。 为了简便,N的自然对数 Nelog简记作lnN。 (6)底数a的取值范围: ), 1 () 1 , 0(真数N的取值范围 :), 0( 复习上节内容)()(),()(),(RnbaabRnmaaRnmaaannnmnnmnmnm新授内容:新授内容: 积、商、幂的对数运算法则:如果 a 0,a 1,M 0, N 0 有:)()()(3R)M(nnlogMlog2NlogMlogNMlog1NlogMlog(MN)loganaaaaaaa为了证明以上公式,请同学们回顾一下指数运算法则 :证明:设 ,logpMa,logqNa由对数的定义可以得: ,paM qaN MN= paqaqpaqpMNa log即证得 ?底数?对数?真数?幂?指数?底数?log?a?Nb?a?b?=N)(1NlogMlog(MN)logaaa证明:设 ,logpMa,logqNa由对数的定义可以得: ,paM qaN qpaaqpaqpNMa log即证得 ?底数?对数?真数?幂?指数?底数?log?a?Nb?a?b?=NNM)(2NlogMlogNMlogaaa证明:设 ,logpMa由对数的定义可以得: ,paM npnaMnpMna log即证得 ?底数?对数?真数?幂?指数?底数?log?a?Nb?a?b?=N)(3R)M(nnlogMlogana上述证明是运用转化的思想,先通过假设,将对数式化成指数式,并利用幂的运算性质进行恒等变形;然后再根据对数定义将指数式化成对数式。)()()(3R)M(nnlogMlog2NlogMlogNMlog1NlogMlog(MN)loganaaaaaaa简易语言表达:“积的对数 = 对数的和”有时逆向运用公式 真数的取值范围必须是 ), 0( 对公式容易错误记忆,要特别注意:,loglog)(logNMMNaaaNMNMaaaloglog)(log例 讲解范例讲解范例 解(1) 解(2) 用 ,log xa,log yazalog表示下列各式: 32log)2(;(1)logzyxzxyaazxyzxyaaalog)(loglog3121232log)(loglogzyxzyxaaazyxaaalogloglog31212logloglogzyxaaazyxaaalog31log21log2练习练习 (1) (4) (3) (2) 1.求下列各式的值:15log5log332lg5lg 31log3log553log6log2236log2)25lg( )313(log5155log32log2110lg11log50133log12. 用lg,lg,lg表示下列各式:练习练习 (1) (4) (3) (2) )lg(xyzzxy2lgzxy3lglglglg;zyx2lglglglg;lglg 21lg; zyxlglg2lg21其他重要公式1:NmnNanamloglog证明:设 ,logpNnam由对数的定义可以得: ,)(pmnaN 即证得 NmnNanamloglogmpnaN pnmNa logpnmaN 其他重要公式:aNNccalogloglog)0), 1 () 1 , 0(,(Nca证明:设 由对数的定义可以得: ,paN 即证得 pNalog,loglogpccaN ,loglogapNccaNpccloglogaNNccalogloglog这个公式叫做换底公式其他重要公式3:abbalog1log), 1 () 1 , 0(,ba证明:由换底公式 取以b为底的对数得: 还可以变形,得 , 1logbbaNNccalogloglogabbbbalogloglogabbalog1log1loglogabba例 计算(1) (2) )42(log75227log9讲解范例讲解范例 解 :)42(log752522log724log522log1422log=5+14=19解 :27log9333log23log23323讲解范例讲解范例 (3) 8log7log3log732解 :8log7log3log7322lg3lg2lg2lg32lg2lg3=33lg7lg7lg8lg(1) 18lg7lg37lg214lg例3计算: 讲解范例讲解范例 解法一: 18lg7lg37lg214lg18lg7lg)37lg(14lg218)37(714lg201lg )32lg(7lg37lg2)72lg(2)3lg22(lg7lg)3lg7(lg27lg2lg018lg7lg37lg214lg解法二: (2) 例3计算: 讲解范例讲解范例 9lg243lg3lg23lg525解: 1023lg)10lg(32lg)3lg(2 . 1lg10lg38lg27lg)3(2213213253lg3lg9lg243lg)2(2 . 1lg10lg38lg27lg)3(12lg23lg) 12lg23(lg2323小结小结 :积、商、幂的对数运算法则:如果 a 0,a 1,M 0, N 0 有:)()()(3R)M(nnlogMlog2NlogMlogNMlog1NlogMlog(MN)loganaaaaaaa其他重要公式:NmnNanamloglogaNNccalogloglog)0), 1 () 1 , 0(,(Nca1loglogabba), 1 () 1 , 0(,ba课后作业课后作业:
展开阅读全文