资源描述
北师大版七年级数学(下)CBDABD(1) ABC, AC=AC,图中有图中有哪些相等的线段哪些相等的线段一位经历过战争的老人讲述一位经历过战争的老人讲述过这样一个故事:过这样一个故事:在抗日战争期间,在抗日战争期间,为了炸毁与我军阵地隔河为了炸毁与我军阵地隔河相望的日本鬼子的碉堡,需要相望的日本鬼子的碉堡,需要测出我军阵地到鬼子碉堡的距离。测出我军阵地到鬼子碉堡的距离。由于没有任何测量工具,我八路军战士由于没有任何测量工具,我八路军战士为此绞尽脑汁,这时一位聪明的八路军战士为此绞尽脑汁,这时一位聪明的八路军战士想出了一个办法,为成功炸毁碉堡立了一功。想出了一个办法,为成功炸毁碉堡立了一功。 这位聪明的八路军战士的方法如下:这位聪明的八路军战士的方法如下: 战士面向碉堡的方向站好,然后调整帽子,战士面向碉堡的方向站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部;然后,使视线通过帽檐正好落在碉堡的底部;然后,他转过一个角度,保持刚才的姿势,这时,视他转过一个角度,保持刚才的姿势,这时,视线落在了自己所在岸的某一点上;接着,他用线落在了自己所在岸的某一点上;接着,他用步测的办法量出自己与那个点的距离,这个距步测的办法量出自己与那个点的距离,这个距离就是他与碉堡的距离。离就是他与碉堡的距离。步测距离碉堡距离1. 如图要测量河两岸相对的两点A、B的距离,先在AB 的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,可以证明EDC ABC,得ED=AB,因此,测得ED的长就是AB的长。判定EDC ABC的理由是( ) A、SSS B、ASA C、AAS D、SASBADCEFB2 2、山脚下有、山脚下有A A、B B两点,要两点,要测出测出A A、B B两点间的距离。两点间的距离。在地上取一个可以直接到在地上取一个可以直接到达达A A、B B点的点点的点O O,连接,连接AOAO并延长到并延长到C C,使,使AO=COAO=CO;连;连接接BOBO并延长到并延长到D D,使,使BO=DOBO=DO,连接连接CDCD。可以证。可以证ABOABOCDOCDO,得,得CD=ABCD=AB,因此,测得因此,测得CDCD的长就是的长就是ABAB的长。判定的长。判定ABOABOCDOCDO的理由是的理由是( ) ( ) A A、SSS BSSS B、ASA ASA C C、AAS DAAS D、SASSASDD DAB如图,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B间的距离,但绳子不够长,你能帮小明设计一个方案,解决此问题吗?想一想想一想1、说出你的设计方案。 2、你能用所学知识说明你设计方案的理由是什么吗?BA 先在地上取一个可以直接到达点A和B点的点C,连接AC并延长到D,使AC=CD,连接BC并延长到E,使CE=CB,连接DE并测量出它的长度,测得的长度就是A、B 间的距离。CDE 在在AB的垂线的垂线BF上取两点上取两点C,D,使,使BC=DC,过点,过点D作出作出BF的垂线的垂线DG,并在,并在DG上找一点上找一点E,使,使A,C,E在一条直线上,这时测得在一条直线上,这时测得DE的长是的长是A,B间的距离。间的距离。BEAGCDFCDF中点CAB1 1、知识:、知识:利用三角形全等测距离的目的:变不可测距利用三角形全等测距离的目的:变不可测距离为可测距离离为可测距离。依据:全等三角形的性质。依据:全等三角形的性质。关键:构造全等三角形。关键:构造全等三角形。2 2、方法:、方法:(1 1)延长法构造全等三角形;延长法构造全等三角形; (2 2)垂直法构造全等三角形。)垂直法构造全等三角形。3 3、数学思想:、数学思想:树立用三角形全等构建数学模型解决实际问树立用三角形全等构建数学模型解决实际问题的思想题的思想。一分耕耘,一分耕耘,一分收获。一分收获。
展开阅读全文