高三数学一轮复习 第4章4.3平面向量的数量积及平面向量的应用课件 文 北师大版

上传人:无*** 文档编号:52208998 上传时间:2022-02-07 格式:PPT 页数:54 大小:2.51MB
返回 下载 相关 举报
高三数学一轮复习 第4章4.3平面向量的数量积及平面向量的应用课件 文 北师大版_第1页
第1页 / 共54页
高三数学一轮复习 第4章4.3平面向量的数量积及平面向量的应用课件 文 北师大版_第2页
第2页 / 共54页
高三数学一轮复习 第4章4.3平面向量的数量积及平面向量的应用课件 文 北师大版_第3页
第3页 / 共54页
点击查看更多>>
资源描述
4.3平面向量的数量积平面向量的数量积及平面向量的应用及平面向量的应用考点探究考点探究挑战高考挑战高考考向瞭望考向瞭望把脉高考把脉高考4.3平平面面向向量量的的数数量量积积及及平平面面向向量量的的应应用用双基研习双基研习面对高考面对高考双基研习双基研习面对高考面对高考1两个向量的夹角两个向量的夹角(1)夹角的定义夹角的定义定义定义范围范围已知两个已知两个_向量向量a,b,作,作 a, b,则则AOB叫作向量叫作向量a与与b的夹角的夹角(如图如图)向量夹角向量夹角的范围是的范围是_ 当当_时,两向量时,两向量共线;共线;当当_时,两向时,两向量垂直,记作量垂直,记作ab(规定规定零向量可与任一向量垂零向量可与任一向量垂直直).,0或或18090非零非零0,180(2)射影的定义射影的定义设设是是a与与b的夹角,则的夹角,则_叫作叫作b在在a方向上方向上的射影的射影_叫作叫作a在在b方向上的射影方向上的射影射影是一个实数,不是线段的长度,也不是向射影是一个实数,不是线段的长度,也不是向量当量当_时,它是正值;当时,它是正值;当_时,它是负值;当时,它是负值;当_时,它是时,它是0.(90,18090|b|cos|a|cos0,90)提示:提示:不正确求两个向量的夹角时,两向量起不正确求两个向量的夹角时,两向量起点应相同,向量点应相同,向量a与与b的夹角为的夹角为ABC.思考感悟思考感悟|a|b|cos|a|cosab0abcos_对任意两个向量对任意两个向量a、b,有,有|ab|a|b|,当且仅当当且仅当ab时等号成立时等号成立(3)向量数量积的运算律向量数量积的运算律给定向量给定向量a,b,c和实数和实数,有,有abba;(交换律交换律)(a)b(ab)_;(数乘结合律数乘结合律)a(bc)_ (分配律分配律)a(b)abac思考感悟思考感悟2当当a0时,由时,由ab0一定有一定有b0吗?吗?提示:提示:不一定不一定ab0有三种情形;有三种情形;a0;b0;ab即即a与与b的夹角为的夹角为90.3平面向量数量积的坐标运算平面向量数量积的坐标运算(1)平面向量数量积的坐标表示平面向量数量积的坐标表示已知两个非零向量已知两个非零向量a(x1,y1),b(x2,y2),则则ab_.即两个向量的数量积即两个向量的数量积等于它们对应坐标的乘积的和等于它们对应坐标的乘积的和x1x2y1y2x2y2(4)两个向量垂直的充要条件两个向量垂直的充要条件设设a(x1,y1),b(x2,y2),则,则ab_.(5)直线的方向向量直线的方向向量把与直线把与直线l共线的向量共线的向量m称为直线称为直线l的方向向量,的方向向量,设直线方程为设直线方程为ykxb,则其方向向量为,则其方向向量为m_设直线方程为设直线方程为AxByC0,则其方向向量为则其方向向量为m_,利用直,利用直线的方向向量可以表示过定点的直线方程、求两线的方向向量可以表示过定点的直线方程、求两直线的夹角等,这给我们处理解析几何问题增加直线的夹角等,这给我们处理解析几何问题增加了一条新途径了一条新途径x1x2y1y20(1,k)(B,A)解析:解析:选选B.ab,ab0,6x560,x5.课前热身课前热身2(原创题原创题)若若a0,ab0,则满足条件的,则满足条件的b的的个数是个数是()A0 B1C2 D无数个无数个解析:解析:选选D.只要只要ba即可,故即可,故b有无数个有无数个答案:答案:C答案:答案:3答案:答案:2向量的数量积是向量之间的一种运算,它是向量向量的数量积是向量之间的一种运算,它是向量与向量的运算,结果却是一个数量平面向量的与向量的运算,结果却是一个数量平面向量的数量积运算类似于多项式的乘法数量积运算类似于多项式的乘法平面向量数量积的运算平面向量数量积的运算考点探究考点探究挑战高考挑战高考 (1)(2010年高考北京卷年高考北京卷)若若a,b是非零是非零向量,且向量,且ab,|a|b|,则函数,则函数f(x)(xab)(xba)是是()A一次函数且是奇函数一次函数且是奇函数B一次函数但不是奇函数一次函数但不是奇函数C二次函数且是偶函数二次函数且是偶函数D二次函数但不是偶函数二次函数但不是偶函数【思路点拨思路点拨】利用向量数量积的定义、性质、利用向量数量积的定义、性质、运算律及模的求法,即可解决运算律及模的求法,即可解决【答案答案】(1)A(2)D(3)B1数量积大于数量积大于0说明不共线的两向量夹角为锐角;说明不共线的两向量夹角为锐角;数量积等于数量积等于0说明两向量的夹角为直角;数量积说明两向量的夹角为直角;数量积小于小于0且两向量不共线时,两向量的夹角就是钝且两向量不共线时,两向量的夹角就是钝角角2找两向量的夹角,在图形中必须使两向量共找两向量的夹角,在图形中必须使两向量共起点,可以结合解三角形求角起点,可以结合解三角形求角3解决向量垂直问题,常用向量垂直的充要条解决向量垂直问题,常用向量垂直的充要条件即非零向量件即非零向量abab0 x1x2y1y20.利用平面向量解决夹角、垂直等问题利用平面向量解决夹角、垂直等问题 (2009年高考江苏卷年高考江苏卷)设向量设向量a(4cos,sin),b(sin,4cos),c(cos,4sin)(1)若若a与与b2c垂直,求垂直,求tan()的值;的值;(2)求求|bc|的最大值;的最大值;(3)若若tantan16,求证:,求证:ab.【思路点拨思路点拨】利用两向量垂直时数量积为利用两向量垂直时数量积为0的坐标运算的坐标运算公式可以解第一问,第二问中模的最值可以转化为三角公式可以解第一问,第二问中模的最值可以转化为三角函数的有界性求解,第三问中利用两向量平行的充要条函数的有界性求解,第三问中利用两向量平行的充要条件进行转化即可得证件进行转化即可得证【名师点评名师点评】求解求解|bc|时注意到向量时注意到向量b与向与向量量c的模都不是定值,因而利用坐标法先求和再的模都不是定值,因而利用坐标法先求和再求模,此方法较求模,此方法较|bc|2b2c22bc要快捷要快捷得多证明两向量平行时,可以利用两向量平行得多证明两向量平行时,可以利用两向量平行的充要条件公式的充要条件公式向量与其它知识结合,题目新颖而精巧,既符合向量与其它知识结合,题目新颖而精巧,既符合考查知识的考查知识的“交汇处交汇处”的命题要求,又加强了对双的命题要求,又加强了对双基覆盖面的考查,特别是通过向量坐标表示的运基覆盖面的考查,特别是通过向量坐标表示的运算,利用解决平行、垂直、成角和距离等问题的算,利用解决平行、垂直、成角和距离等问题的同时,把问题转化为新的函数、三角或几何问同时,把问题转化为新的函数、三角或几何问题题平面向量的应用平面向量的应用【思路点拨思路点拨】(1)根据向量加、减法的几何意根据向量加、减法的几何意义求解;义求解;(2)根据向量数量积的坐标运算,列方程求解根据向量数量积的坐标运算,列方程求解【名师点评名师点评】利用向量解平面几何、解析几何利用向量解平面几何、解析几何问题要注意向量线性运算的几何意义及数量积的问题要注意向量线性运算的几何意义及数量积的坐标表示的应用坐标表示的应用方法技巧方法技巧1要熟练类似要熟练类似(ab) (satb)sa2(ts)abtb2的运算律的运算律(、s、tR)(如如例例1(1)2解决向量模的问题的关键是利用解决向量模的问题的关键是利用|a|2a2,将模的问题转化为数量积的问题,通过数的精确将模的问题转化为数量积的问题,通过数的精确计算来解决问题计算来解决问题(如例如例2)方法感悟方法感悟3平面向量的数量积的运算法则把平面向量与平面向量的数量积的运算法则把平面向量与实数紧密地联系在一起,使它们之间的相互转化实数紧密地联系在一起,使它们之间的相互转化得以实施因此,一方面我们要善于把向量的有得以实施因此,一方面我们要善于把向量的有关问题通过数量积转化为实数问题,利用实数的关问题通过数量积转化为实数问题,利用实数的有关知识来解决问题;另一方面,也要善于把实有关知识来解决问题;另一方面,也要善于把实数问题转化为向量问题,利用向量作工具来解决数问题转化为向量问题,利用向量作工具来解决相关问题相关问题(如例如例3)1零向量:零向量:(1)0与实数与实数0的区别,不可写错;的区别,不可写错;0a00,a(a)00,a000;(2)0的方的方向是任意的,并非没有方向,向是任意的,并非没有方向,0与任何向量平行,与任何向量平行,我们只定义了非零向量的垂直关系我们只定义了非零向量的垂直关系2ab0不能推出不能推出a0或或b0,因为,因为ab0ab.失误防范失误防范平面向量的数量积是每年高考必考的知识点之一,平面向量的数量积是每年高考必考的知识点之一,考查重点是向量的数量积运算,向量的垂直以及考查重点是向量的数量积运算,向量的垂直以及用向量方法解决简单的几何问题等,既有选择题,用向量方法解决简单的几何问题等,既有选择题,填空题,又有解答题,属中低档题目近几年试填空题,又有解答题,属中低档题目近几年试题中与平面几何、三角、解析几何知识交汇命题题中与平面几何、三角、解析几何知识交汇命题的综合题是高考的一个热点,主要考查运算能力的综合题是高考的一个热点,主要考查运算能力和数形结合思想和数形结合思想考向瞭望考向瞭望把脉高考把脉高考预测预测2012年高考仍将以向量的数量积运算、向量年高考仍将以向量的数量积运算、向量的垂直为主要考点,以与三角、平面几何、解析的垂直为主要考点,以与三角、平面几何、解析几何的交汇命题为考向几何的交汇命题为考向规范解答规范解答【解解】(1)法一:法一:bc(cos1,sin),则,则|bc|2(cos1)2sin22(1cos).3分分1cos1,0|bc|24,即,即0|bc|2.当当cos1时,有时,有|bc|2,向量向量bc的长度的最大值为的长度的最大值为2.6分分法二:法二:|b|1,|c|1,|bc|b|c|2.3分分当当cos1时,有时,有bc(2,0),即,即|bc|2,所以向量所以向量bc的长度的最大值为的长度的最大值为2.6分分【名师点评名师点评】(1)本题易失误的是:对向量本题易失误的是:对向量的加法、数量积的坐标运算公式掌握不清,不会的加法、数量积的坐标运算公式掌握不清,不会运算,导致无从下手;知道相关知识,知道解运算,导致无从下手;知道相关知识,知道解决思路,但运算出现错误,结果不准确;书写决思路,但运算出现错误,结果不准确;书写过程不详细,逻辑性不强,语句不流畅,卷面不过程不详细,逻辑性不强,语句不流畅,卷面不整洁,对而不全;出现整洁,对而不全;出现|bc|b|c|这这种错误种错误(2)本题主要考查平面向量、三角函数的概念、本题主要考查平面向量、三角函数的概念、三角变换和向量运算等基本知识,考查基本运算三角变换和向量运算等基本知识,考查基本运算能力此题将平面向量、三角函数、三角变换三能力此题将平面向量、三角函数、三角变换三部分知识进行有机的融合,综合性强学科内知部分知识进行有机的融合,综合性强学科内知识融合的问题是近年来高考考查的热点,因为这识融合的问题是近年来高考考查的热点,因为这类题能很全面地考查考生综合运用知识,分析问类题能很全面地考查考生综合运用知识,分析问题、解决问题的能力题、解决问题的能力(3)一般来说向量与三角融合时,都会给出向量一般来说向量与三角融合时,都会给出向量的坐标,都会进行向量的坐标运算,因此向量的的坐标,都会进行向量的坐标运算,因此向量的坐标运算公式是必须要记住且要会使用涉及向坐标运算公式是必须要记住且要会使用涉及向量平行或垂直,两个坐标关系式也要会熟练地应量平行或垂直,两个坐标关系式也要会熟练地应用用此题第此题第(1)问,就是要先通过向量的加法运算求问,就是要先通过向量的加法运算求向量向量bc的坐标,第的坐标,第(2)问涉及问涉及a(bc),要,要利用两个向量垂直的坐标关系式,再结合三角知利用两个向量垂直的坐标关系式,再结合三角知识就可以使问题得到很好的解决识就可以使问题得到很好的解决(4)向量的数量积的坐标运算经常会与其他数学向量的数量积的坐标运算经常会与其他数学问题联系起来,特别是与三角函数问题相联系,问题联系起来,特别是与三角函数问题相联系,解答这类问题的关键是要熟练地运用向量的数量解答这类问题的关键是要熟练地运用向量的数量积的坐标运算公式,通过公式,将向量问题转化积的坐标运算公式,通过公式,将向量问题转化为一般的三角函数问题求解为一般的三角函数问题求解名师预测名师预测
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!