资源描述
第2讲统计初步专题七概率与统计栏目索引 高考真题体验1 1 热点分类突破2 2 高考押题精练3 3 高考真题体验1.(2016课标全国丙改编)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ,B点表示四月的平均最低气温约为5 .给出以下四种表示,其中不正确的序号是_.各月的平均最低气温都在0 以上;七月的平均温差比一月的平均温差大;三月和十一月的平均最高气温基本相同;平均最高气温高于20 的月份有5个.解析解析由题意知,平均最高气温高于20 的有七月,八月,故填.解析2.(2016山东改编)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30,样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30.根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是_.140解 析解 析 设 所 求 人 数 为 N , 则 N 2.5(0.160.080.04)200140.解析答案3.(2016上海)某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是_(米).1.76答案考情考向分析返回1.以填空题的形式考查随机抽样、样本的数字特征、统计图表等;2.在概率与统计的交汇处命题,以中档难度解答题出现.热点一抽样方法热点分类突破1.简单随机抽样特点是从总体中逐个抽取.适用范围:总体中的个体数较少.2.系统抽样特点是将总体均分成几部分,按事先确定的规则在各部分中抽取.适用范围:总体中的个体数较多.3.分层抽样特点是将总体分成几层,分层进行抽取.适用范围:总体由差异明显的几部分组成.例1(1)某单位有420名职工,现采用系统抽样方法抽取21人做问卷调查,将420人按1,2,420随机编号,则抽取的21人中,编号落入区间281,420的人数为_.解析解析因4202120,而4202811(1391)207,故抽取的人中编号落入区间281,420的人数是7.7解析答案(2)某工厂生产甲、乙、丙三种型号的产品,产品数量之比为357,现用分层抽样的方法抽出容量为n的样本,其中甲种产品有18件,则样本容量n_.90思维升华解析答案思维升华(1)随机抽样各种方法中,每个个体被抽到的概率都是相等的;(2)系统抽样又称“等距”抽样,被抽到的各个号码间隔相同;(3)分层抽样满足:各层抽取的比例都等于样本容量在总体容量中的比例.跟踪演练1(1)要考察某公司生产的500克袋装牛奶中三聚氰胺的含量是否超标,现从800袋牛奶中抽取60袋进行检验,利用随机数法抽取样本时,先将800袋牛奶按000,001,799进行编号,如果从随机数表第7行第8列的数开始向右读,则得到的第4个样本个体的编号是_.(下面摘取了随机数表第7行至第9行)84 42 17 53 3157 24 55 06 8877 04 74 47 6721 76 33 50 25 83 92 12 06 76(第7行)63 01 63 78 5916 95 55 67 1998 10 50 71 7512 86 73 58 07 44 39 52 38 79(第8行)068答案33 21 12 34 2978 64 56 07 8252 42 07 44 3815 51 00 13 4299 66 02 79 54(第9行)解析解析由随机数法可知抽取样本个体的编号为331,572,455,068,故第4个样本个体的编号为068.解析(2)利用分层抽样的方法在学生总数为1 200人的年级中抽出20名同学,其中有女生8人,则该年级男生的人数约为_.720解析答案热点二用样本估计总体2.频率分布直方图中各小长方形的面积之和为1.3.利用频率分布直方图求众数、中位数与平均数利用频率分布直方图求众数、中位数和平均数时易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.例2(1)在某次测量中得到的A样本数据如下:42,43,46,52,42,50,若B样本数据恰好是A样本数据每个都减5后所得数据,考查四种数字特征:平均数,标准差,众数,中位数,则A,B两样本的_是对应相同的.解析解析设样本A中的数据为xi,则样本B中的数据为yixi5,则样本数据B中的众数和平均数以及中位数和A中的众数,平均数,中位数相差5,只有标准差没有发生变化.标准差解析答案(2)若五个数1,2,3,4,a的平均数为3,则这五个数的标准差是_.所以10a15,即a5;由标准差的计算公式可得222221(13)(23)(33)(43)(53)5s2思维升华解析答案思维升华(1)反映样本数据分布的主要方式:频率分布表、频率分布直方图、茎叶图.关于频率分布直方图要明确每个小矩形的面积即为对应的频率,其高低能够描述频率的大小,高考中常常考查频率分布直方图的基本知识,同时考查借助频率分布直方图估计总体的概率分布和总体的特征数,具体问题中要能够根据公式求解数据的平均数、众数、中位数和方差等.(2)由样本数据估计总体时,样本方差越小,数据越稳定,波动越小.跟踪演练2(1)某学生在一门功课的22次考试中,所得分数茎叶图如图所示,则此学生该门功课考试分数的极差与中位数之和为_.解析解析22次考试中,所得分数最高的为98,最低的为56,所以极差为985642,将分数从小到大排列,中间两数为76,76,所以中位数为76,所以此学生该门功课考试分数的极差与中位数之和为4276118.118解析答案(2)某学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n且支出在20,60元的样本,其频率分布直方图如图所示,其中支出在50,60元的学生有30人,则n的值为_.解析解析支出在50,60元的频率为10.10.240.360.3,所以n300.3100.100解析答案热点三概率与统计的综合问题概率与统计密不可分,概率的计算问题往往与抽样方法,频率分布直方图,茎叶图相结合在高考中进行考查,以生活中的热点问题为背景,在概率统计交汇点处命题已成为高考的一个方向.例3经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位: t,100X150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T表示为X的函数;解析答案解解当X100,130)时,T500X300(130X)800X39 000;当X130,150时,T50013065 000.(2)根据直方图估计利润T不少于57 000元的概率.解解由(1)知利润T不少于57 000元当且仅当120X150.由直方图知需求量X120,150的频率为0.7,所以下一个销售季度内的利润T不少于57 000元的概率的估计值为0.7.思维升华解析答案思维升华解决概率、统计综合问题的步骤:第一步,根据所给的频率分布直方图、茎叶图等统计图表确定样本数据、均值等统计量;第二步,根据题意,一般选择由频率估计概率,确定相应的事件的概率;第三步,利用互斥事件、对立事件、古典概型等概率计算公式计算概率.跟踪演练3从某校高中男生中随机抽取100名学生,将他们的体重(单位:kg)数据绘制成频率分布直方图(如图).若要从体重在60,70),70,80),80,90三组内的男生中,用分层抽样的方法选取6人组成一个活动队,再从这6人中选2人当正、副队长,则这2人的体重不在同一组内的概率为_.答案解析返回解析解析体重在60,70)的男生人数为0.0301010030,同理在70,80)的男生人数为20,在80,90的男生人数为10,所以按分层抽样选取6人,各小组依次选3人,2人,1人,分别记为a,b,c;A,B;M.从这6人中选取2人,共有15种结果,其中体重不在同一组内的结果有11种.押题依据 高考押题精练1.甲、乙两同学5次综合测评的成绩如茎叶图所示,老师在计算甲、乙两人平均分时,发现乙同学成绩的一个数字无法看清.若从0,1,2,9中随机取一个数字代替,则乙的平均成绩超过甲的平均成绩的概率为_.押题依据押题依据根据茎叶图求平均值、概率、方差等是高考热点.解析答案押题依据2.某校为了了解高三学生寒假期间的学习情况,抽查了100名学生,统计他们每天的平均学习时间,绘成的频率分布直方图如图所示,则这100名学生中学习时间在6至10小时之间的人数为_.押题依据押题依据频率分布直方图多以现实生活中的实际问题为背景,对图形的理解应用可以考查考生的基本分析能力,是高考的热点.58返回答案解析解析解析由图知,(0.040.12x0.140.05)21,解得x0.15,所以学习时间在6至10小时之间的频率是(0.150.14)20.58,所求人数为1000.5858.返回
展开阅读全文