资源描述
5.1 函数(函数(1)汽车从淮安出发沿京沪高速汽车从淮安出发沿京沪高速匀速匀速驶向上海驶向上海 。有不变的数量吗?有不变的数量吗?有变化的数量吗?有变化的数量吗?行程问题:路程(行程问题:路程(s)、速度()、速度(v)、时间()、时间(t)。)。你能指出下列各式的常量和变量吗?你能指出下列各式的常量和变量吗?求余角的计算公式为求余角的计算公式为=90=900 0-圆周长圆周长C C和半径和半径r r的关系式为的关系式为C=2r C=2r 矩形的长矩形的长a a一定,宽为一定,宽为b b,面积,面积S=abS=ab这是工作人员根据水库的水位变化与水库蓄水量这是工作人员根据水库的水位变化与水库蓄水量变化情况而制作的表格:变化情况而制作的表格:水位水位/m106120133135蓄水蓄水/ m32.301077.091071.181081.23108说说表格里有几个变量?他们有怎样的关系呢?说说表格里有几个变量?他们有怎样的关系呢?水深(水深(hm ) 106 120 133 135 存水量存水量Q(万(万m3)2.30107 7.09107 1.18108 1.23108 随着随着 的变化而变化,的变化而变化,当当 确定时,确定时, 也确定。也确定。存水量存水量Q Q水深水深h h水深水深h h存水量存水量Q Q814小鱼的条数小鱼的条数 火柴的根数火柴的根数12 38+6(n-1)n20602你来算一算你来算一算问题问题3: 根据小鱼的条数与所需火柴棒的根据小鱼的条数与所需火柴棒的根数的关系,说说你从中获得的信息。根数的关系,说说你从中获得的信息。圆的面积随着半径的圆的面积随着半径的变化而变化变化而变化, ,随着半径随着半径的确定而确定的确定而确定. .问题问题3 3:变化中的圆面积:变化中的圆面积S S与半径与半径R R的大小密切相的大小密切相关,你能大致描述它们关,你能大致描述它们之间的关系吗?之间的关系吗?12341234半径半径R面积面积S4916258159S= R2上述问题都有怎样的共同之处呢?上述问题都有怎样的共同之处呢?在上述例子中,每个变化过程中都存在上述例子中,每个变化过程中都存在着在着两个两个变量,当其中一个变量变量,当其中一个变量变化变化时,另一个变量也时,另一个变量也随着随着发生发生变化变化,当,当一个变量一个变量确定确定时,另一个变量也时,另一个变量也随着随着确定确定。1、水库水位变化与水库蓄水量变化而制作的表格、水库水位变化与水库蓄水量变化而制作的表格3、搭小鱼的条数、搭小鱼的条数n和所需火柴根数和所需火柴根数S的关系式的关系式2、圆的面积圆的面积S与半径与半径R的关系式的关系式.一般地,设在一个变化的过程中有两个变量一般地,设在一个变化的过程中有两个变量x和和y。如果对于变量。如果对于变量x的每一个值,变量的每一个值,变量y都都有唯一的值与它对应,我们称有唯一的值与它对应,我们称y是是x的函数的函数(function).其中,其中,x是是自变量自变量,y是是因变量因变量。你能再举一些你熟悉的函数例子吗?你能再举一些你熟悉的函数例子吗?圆面积圆面积s是半径是半径r的函数吗?的函数吗?长方形面积长方形面积s一定,长一定,长a是宽是宽b的函数吗?的函数吗?用一根用一根1m长的铁丝围成一个长方形。长的铁丝围成一个长方形。(1)当长方形的宽为)当长方形的宽为0.1m时,长为时,长为 m(2)当长方形的宽为)当长方形的宽为0.2m时,长为时,长为 m(3)当长方形的宽为)当长方形的宽为 a m时,长为时,长为 m0.40.3(0.5-a)(4)长方形的长是宽的函数吗?为什么?长方形的长是宽的函数吗?为什么?长方形的长长方形的长=0.5=0.5周长周长- -宽宽 a=0.5-ba=0.5-b 用用60m60m的篱笆围成矩形,使矩形一边靠墙,的篱笆围成矩形,使矩形一边靠墙,另三边用篱笆围成另三边用篱笆围成 1 1写出矩形面积写出矩形面积s s(m m2 2)与平行于墙的一边)与平行于墙的一边长长a a(m m)的关系式;)的关系式; 2 2写出矩形面积写出矩形面积s s(m m2 2)与垂直于墙的一边)与垂直于墙的一边长长b b(m m)的关系式。并指出两式中的常量与变量,)的关系式。并指出两式中的常量与变量,函数与自变量。函数与自变量。墙墙abb60-a 2S=a1S=(60-2b)b例题讲解:例题讲解:例题讲解:例题讲解:某玩具厂计划生产一种玩具小狗某玩具厂计划生产一种玩具小狗, ,每日最高产量每日最高产量为为4040只只, ,且每日产出的产品全部出售且每日产出的产品全部出售, ,已知生产已知生产x x只玩具小狗的成本为只玩具小狗的成本为R R元元, ,售价每只为售价每只为P P元元, ,且且R R、P P与与x x的关系式为的关系式为R=500+30 xR=500+30 x, ,P=170-2xP=170-2x(1 1)上面两个关系式中)上面两个关系式中, ,分别写出常量和变分别写出常量和变量量(2 2)若获得的利润为)若获得的利润为y y元元, ,指出在求利润的关系指出在求利润的关系中的变量中的变量大家一起来说大家一起来说 作业:作业:145 1
展开阅读全文