资源描述
3.2(1) 3.2(1) 复数的四则运算复数的四则运算江苏省沭阳县修远中学江苏省沭阳县修远中学 陈永和陈永和 ; 形如形如a a+ +bibi( (a,ba,bR)R)的数叫做复数的数叫做复数. . 全体复数所形成的集合叫做全体复数所形成的集合叫做,一般用字母,一般用字母 表示表示 . .复习:复习:通常用字母通常用字母 表示,即表示,即 biaz ),(RbRa 其中其中 称为称为虚数单位虚数单位。i000000bababb,非纯虚数,纯虚数虚数实数000000bababb,非纯虚数,纯虚数虚数实数CR ,Rdcba 若dicbia dbca特别地,特别地,a+bia+bi=0=0 . .a=b=0a=b=0必要不充分条件必要不充分条件问题:问题:a=0a=0是是z=a+bi(az=a+bi(a、b b R)R)为为纯虚数的纯虚数的 注意注意: :一般地一般地, ,两个复数只能说相等两个复数只能说相等或不相等或不相等, ,而不能比较大小而不能比较大小. .思考思考: :对于任意的两个复数到底能否对于任意的两个复数到底能否比较大小比较大小? ?答案答案: :当且仅当两个复数都是实数当且仅当两个复数都是实数时时, ,才能比较大小才能比较大小. .1.复数加减法的运算法则:复数加减法的运算法则:(1)(1)运算法则运算法则: :设复数设复数z z1 1=a+bi,z=a+bi,z2 2=c+di=c+di, , 那么:那么:z z1 1+z+z2 2=(a+c)+(b+d)i=(a+c)+(b+d)i; ; z z1 1-z-z2 2=(a-c)+(b-d)i=(a-c)+(b-d)i. .即即: :两个复数相加两个复数相加( (减减) )就是实部与就是实部与实部实部, ,虚部与虚部分虚部与虚部分 别相加别相加( (减减).).(2)(2)复数的加法满足复数的加法满足交换律交换律、结合律结合律, ,即对任何即对任何z z1 1,z,z2 2,z,z3 3C,C,有有z z1 1+z+z2 2=z=z2 2+z+z1 1, ,(z(z1 1+z+z2 2)+z)+z3 3=z=z1 1+(z+(z2 2+z+z3 3).).例例1.1.计算计算 )43 ()2()65 (iii解解: :iiiii11)416()325()43()2()65(2.复数的乘法与除法复数的乘法与除法(1)(1)复数乘法的法则复数乘法的法则 复数的乘法与多项式的乘法是类似复数的乘法与多项式的乘法是类似的的, ,但必须在所得的结果中把但必须在所得的结果中把i i2 2换成换成-1,-1,并且把实部合并并且把实部合并. .即即: :(a+bi)(c+di(a+bi)(c+di)=ac+bci+adi+bdi)=ac+bci+adi+bdi2 2=(ac-bd)+(bc+ad)i.(2)(2)复数乘法的运算定理复数乘法的运算定理 复数的乘法满足复数的乘法满足交换律交换律、结合律结合律以以及乘法对加法的及乘法对加法的分配律分配律. .即对任何即对任何z z1 1,z,z2 2,z,z3 3有有z z1 1z z2 2=z=z2 2z z1 1; ;(z(z1 1z z2 2)z)z3 3=z=z1 1(z(z2 2z z3 3););z z1 1(z(z2 2+z+z3 3)=z)=z1 1z z2 2+z+z1 1z z3 3. .)(1biabia)(22222)(2ibabiabia)(例例2 2:计算:计算222ibabiabia22ba 222babia)2)(43)(21 (3iii)(iiiiii1520)2)(211()2)(43)(21 (3)(3)复数的除法法则复数的除法法则 先把除式写成分式的形式先把除式写成分式的形式, ,再把分子再把分子与分母都乘以分母的共轭复数与分母都乘以分母的共轭复数, ,化简后化简后写成代数形式写成代数形式( (分母实数化分母实数化).).即即分母实数化分母实数化dicbiadicbia)()()()(dicdicdicbia22)()(dciadbcbdac例例3.3.计算计算)43()21 (ii解解:iiii4321)43()21 ()43)(43()43)(21 (iiii2510543468322iiii5251(1 1)已知已知求求iziz41,232121212121,zzzzzzzz练练 习习(2 2)已知)已知 求求iziz2,1212214121)(,zzzzz(3 3)2)1 (i;2iii11i1; iii11; i. i练习练习: :P63P63拓拓 展展求满足下列条件的复数求满足下列条件的复数z:z:(1)z+(3(1)z+(34i)=1;4i)=1;(2)(3+i)z=4+2i(2)(3+i)z=4+2i
展开阅读全文