2022秋八年级数学上册 第二章 实数2.2 平方根 2平方根教案(新版)北师大版

上传人:水****8 文档编号:48981096 上传时间:2022-01-17 格式:DOC 页数:6 大小:108KB
返回 下载 相关 举报
2022秋八年级数学上册 第二章 实数2.2 平方根 2平方根教案(新版)北师大版_第1页
第1页 / 共6页
2022秋八年级数学上册 第二章 实数2.2 平方根 2平方根教案(新版)北师大版_第2页
第2页 / 共6页
2022秋八年级数学上册 第二章 实数2.2 平方根 2平方根教案(新版)北师大版_第3页
第3页 / 共6页
点击查看更多>>
资源描述
精品文档2.2.2 平方根一、学生起点分析 学生在七年级上册学习 “棋盘上的故事就认识了一种运算 “乘方,并能熟练计算任何一个数的平方知道正数的平方是正数,负数的平方是正数,0的平方是0 在八年级上册第二章?实数?的学习中又认识了算术平方根的概念和表示方法,已能求非负数的算术平方根那么这一课时进一步学习平方根本节也为后面学习 “立方根做根底二、教学任务分析 ?平方根?是义务教育课程标准北师大版实验教科书八年级上第二章?实数?的第二节本节安排了两个课时完成第一课时是了解数的算术平方根的概念,会用根号表示一个数的算术平方根在具体的例子中抽象出概念,开展学生的抽象概括能力本节课是第二课时,继续学习平方根的概念及其运用并对“平方根和“算术平方根,“平方和“开平方的概念做辨析,使学生在“引导探索类比发现中开展学习数学的能力为此,本节课的教学目标是 了解平方根、 开平方的概念,明确算术平方根与平方根的区别和联系进一步明确平方与开平方是互逆的运算关系经历平方根概念的形成过程,让学生不仅掌握概念,而且提高和稳固所学知识的应用能力教学重点是 了解平方根、开平方的概念了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根了解平方根与算术平方根的区别与联系教学难点是 平方根与算术平方根的区别和联系负数没有平方根,即负数不能进行开平方的运算三、教学过程设计:本节课采用引导、探究、类比相结合的教学方法,设计了六个教学环节 第一环节 复习旧知 引入新知;第二环节 形成概念,辨析概念;第三环节 例题和稳固练习;第四环节 课堂小结;第五环节 思维拓展;第六环节 布置作业第一环节 复习旧知 引入新知内容:方法一 复习引入1什么叫算术平方根? 3的平方等于9,那么9的算术平方根就是 3 的平方等于 ,那么 的算术平方根就是_展厅的地面为正方形,其面积49平方米,那么边长_ 7_米2到目前为止,我们已学过哪些运算?这些运算之间的关系如何?乘方有没有逆运算? 平方与算术平方根之间的关系?折叠着的正方形ABCD面积为1,那么边长为_1_将它扩展,假设面积变为原来的2倍,那么它的边长为_;假设面积变为原来的3倍,那么边长为_;假设面积变为原来的n倍,那么边长为_方法二 复习引入问题 平方等于9,49的数还有吗?目的: 这一环节主要是复习旧知识和提出问题,由上节课的“算术平方根的求法使学生能明白“平方和“算术平方根的关系,让学生在几何图形中认识熟悉它们的互化关系并把上节课的思考题制作成Flash情景引入,增加动画效果效果 借助多媒体吸引学生的注意力,激发学生的学习兴趣说明 数学知识源于生活,并效劳于我们的生活这两种方法通过生活中的具体问题激发学生的学习兴趣,并让他们产生解决问题的强烈愿望第二环节 : 新课学习内容 一探究新知填空 3=(9 ) (3)=(9 ) ( )=9 0=0()=() (不存在)=4 ()=() 二形成概念(1)一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根而把正的平方根叫做a的算术平方根表达式为:假设x=a,那么x叫做a的平方根 记作 例如:(±4) =16,那么+4和4都是16的平方根;即16的平方根是±4;4是16的算术平方根三探索平方与开平方的关系:给出几组具体的数据,由平方探知开平方与平方的互逆关系四概念辨析平方根与算术平方根的联系与区别 联系 1包含关系 平方根包含算术平方根,算术平方根是平方根的一种 2只有非负数才有平方根和算术平方根3 0的平方根是0,算术平方根也是0区别 1个数不同:一个正数有两个平方根,但只有一个算术平方根 2表示法不同:平方根表示为 ,而算术平方根表示为目的 形成“平方根的概念在列举一些具体数据的感性认识根底上,由平方运算反推出平方根的概念和定义,并让学生非常熟练地进行平方和平方根之间的互化并,明白它们之间的互逆关系,辨析概念 “平方根与 “算术平方根的区别与联系,使之与上一节课紧密联系效果 由于遵循了从具体到抽象的过程,注重学生原有认知根底的回忆,并和原有的概念进行了比拟与辨析,因此,学生对这一抽象的概念掌握得比拟牢靠说明 平方根与算术平方根的区别是本节课的一大难点,也是学生经常容易出错的地方对这两个概念加以比拟与区别有利于学生的理解与掌握第三环节 例题和新知稳固一例题示范求以下各数的平方根:(1)64;(2);(3) 0.0004;(4);(5) 11解 1,;2,;3,; 4, ;5目的 这是书上的例题,要求学生能正确掌握平方根的文字说理及符号化的表达能熟练地求出一个数的平方根,然后由题中的数据探索出正数、0、负数的平方根的个数效果 通过对例题的详解,学生能准确地书写表达,标准平方根的书写格式,掌握正确的符号化语言二思考提升1 ,的算术平方根是_,的平方根是_;2 , , ,=_;3= , 三稳固练习1 以下说法正确的选项是 25的平方根是5;36的平方根是6;平方根等于0的数是0;64的平方根是82以下说法不正确的选项是( ) (A)0的平方根是0 (B)的平方根是 (C)非负数的平方根是互为相反数 (D)一个正数的算术平方根一定大于这个数的相反数3一个自然数的算术平方根是a,那么该自然数的下一个自然数的算术平方根是 (A) a+1 (B) (C) +1 (D) 4为何值,有意义?答 因为,所以 目的 围绕本节课的重点知识 平方根作适当的练习,在不同的变式练习中加深对平方根意义的理解 效果 学生根本能顺利解决这些问题,并利用探索的规律进行标准的表达第四环节 课堂小结内容 引导学生总结本课时的知识、方法目的 让学生对所学的知识进行梳理,使之思路清晰,既稳固了有关知识,又培养了学生良好的学习习惯效果 在老师的引导下学生自己总结本节课的知识、方法,如 平方根的概念 假设,那么x叫a的平方根,平方根的个数 正数有2个平方根,0的平方根是0,负数没有平方根平方与开方之间的关系;求平方根的方法 求一个数的平方根就是转化寻找哪个数平方等于这个数第五环节 提高训练内容 1.的小数局部为a,的小数局部为b,求的值 2实数a,b满足假设a,b为的两边,求第三边c的取值范围;假设a,b为的两边,第三边c等于5,求的面积 目的 安排了两道题,其中最后一题是用算术平方根的意义来解决三角形的问题,这一环节主要针对层次较好的学生提供的题可供老师根据教学的实际情况灵活处理第六环节作业布置习题2四、教学设计反思 本节课是八年级上册第二章?平方根?的第二课时主要知识是平方根的学习和运用教材是教师提供最根本的教学素材,教师完全可以根据学生的实际情况进行适当调整 一注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很必要的所以在学习平方根的概念时,对正数有两个平方根学生不太容易接受,往往丢掉负的平方根,因为这与他们以前的经验不符对此,在平方根的引入时,可多提一些具体的问题如“9的算术平方根是3,也就是说,3的平方是9还有其他的数,它的平方也是9吗?等等,旨在引起学生的思考,让学生从具体的例子中抽象出初步的平方根的概念再让学生去讨论 一个正数有几个平方根?0有几个平方根?负数呢?引导学生更深刻地理解平方根的概念,然后通过具体的求平方根的练习,稳固新学的概念二鼓励学生进行探究和交流 本节课为学生提供了有趣而富有数学含义的问题,让学生进行充分的探索和交流如 把正方形的面积不断的扩大为2倍、3倍、n倍,来引导学生充分进行交流、讨论与探索等数学活动,从中感受学习平方根的必要性三设计之中多处运用类比的方法,使学生清楚新旧知识的区别和联系类比概念 “平方根和“算术平方根的区别和联系,“平方和“开平方运算四根据学生实际,灵活使用教材教材上只安排了一道例题和几个想一想,为了让学生对新知稳固,我增加了局部练习题,围绕“平方根这一知识点进行各种题型的变式练习当然,选题要有层次,有梯度老师们在进行教学时可以根据学生的实际情况作适当的取舍五建议 根据知识结构的逻辑关系与学生的认知规律,建议教材在内容安排上平方根置于算术平方根之前欢迎下载
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 考试试卷


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!