资源描述
第三章 化学反应系统热力学 练 习 题3-4 在291333K温度范围内,下述各物质的Cp,m /(JK-1mol-1)分别为 CH4(g): 35.715; O2(g): 29.36; CO2(g): 37.13; H2O(l): 75.30;在298.2K时,反应 CH4 (g) + 2O2(g)=CO2(g) + 2H2O(l) 的恒压反应热效应为 -890.34kJmol-1。.求 333K时该反应的恒容反应热效应为多少?解:(1) 求333K时恒压反应热效应: H(333K) =H(298.2K)+= -887.0 kJ mol-1(2) 求恒容反应热效应: U(333K) =H(333K) - = -881.6kJmol-13-5 由以下数据计算2,2,3,3四甲基丁烷的标准生成热。已知:H(g)=217.94 kJ mol-1,C(g)=718.38 kJmol-1,C-C=344 kJmol-1,C-H= 414 kJmol-1。解:CH3C(CH3)2 C(CH3)2 CH3 (g)=18H(g)+8C(g)-7C-C-18C-H = -190 kJ mol-13-6 已知25时下列数据: 物 质 CH3OH(l) CH3OH(g) (298.15 K) /(kJ mol-1) - 238.7 - 200.7(298.15 K) /(J K-1 mol-1) 127.0 239.7计算25时甲醇的饱和蒸气压p*。解:CH3OH(l)CH3OH(g) ,=-200.7-(-238.7)-T239.7-127.010-3= 4.4 kJ mol-1 =, =p*/, p*=1.7104Pa3-8 已知反应C(石墨)+H2O(g)CO(g)+H2(g) 的 (298.15 K) =133 kJ mol-1,计算该反应在125时的 (398.15K)。假定各物质在25125范围内的平均等压摩尔热容如下表: 物 质C(石墨) H2O(g) CO(g) H2(g)Cp,m/(J K-1 mol-1)8.64 29.11 28.0 33.51解:(398.15K)= (298.15 K)+ Cp,mT=135 kJ mol-13-9 已知下述单位反应:H2(g)+I2(s)=2HI(g); (291K)= 49.46 kJ mol-1。I2(s)在熔点386.6K熔化吸热16.74kJ mol-1。I2(l)在沸点457.4K,下吸热42.68kJ mol-1。I2(s)在291K-386.6K间平均热容为55.65 J K-1mol-1。I2(l)在386.6-457.4K间的平均热容为62.76 J K-1mol-1。求上述单位反应在473.15K的rHm值。三种气体摩尔热容是:Cp,mH2(g)=29.08-0.00084T (JK-1mol-1); Cp,mI2(g)=35.56-0.00054T (J K-1mol-1); Cp,mHI(g) = 28.07-0.00021T (J K-1mol-1)。解:rHm(473.15K)= +(-42.68kJ mol-1)+(- 16.74kJ mol-1)+(291K)+ =-20.4 kJ mol-13-10 已知CO和CH3OH(g),25的标准摩尔生成焓分别为-110.52和 - 201.2 kJ mol-1; CO、H2、CH3OH(l),25的标准摩尔熵分别为197.56、130.57、127.0 J K-1mol-1。又知25甲醇的饱和蒸气压为16582Pa,气化焓为38.0 kJ mol-1。蒸气可视为理想气体,求反应CO(g)+2H2(g)=CH3OH(g)的(298.15K)及(298.15K)。解:=-201.2-(-110.52)= -90.68 kJ mol-1, CH3OH(g)= 127.0+38.0103/298+Rln(16.582/100)=239.4 J K-1mol-1, =239.4-(197.56+2130.57)=-219.3 J K-1mol-1 ,(298.15K)= -T=-25.3kJ mol-1, (298.15K)= 2.71043-11 已知(H2O,l,298.15K) = - 237.19 kJmol-1,25时水的饱和蒸气压p* (H2O)=3.167kPa,若H2O(g)可视为理想气体,求(H2O,g,298.15K)。解:(H2O,g)= (H2O,l)-RTln(p*/)= - 228.6 kJ mol-13.12 已知(CH3OH,g,298.15K) = -162.51 kJmol-1, 25时p*(CH3OH)=16.27kPa,若CH3OH(g)可视为理想气体,求(CH3OH,l,298.15K)。解:(CH3OH,l)= (CH3OH,g) +RTln(p*/)= -167 kJ mol-13-13 已知Br2(l)的饱和蒸气压p*(Br2)=28574 Pa,求反应Br2(l) = Br2(g)的(298.15K)。解:= -RTln(p*/)=3.14 kJ mol-13-14 已知理想气体间的反应CO(g)+H2O(g)=CO2(g)+H2(g)在973.15K时= 0.71。 (1) 系统中四种气体的分压均为1.50时,上述反应的自发方向如何?(2) p(CO)=10,p(H2O)=5,p(CO2)=p(H2)=1.5时,反应的自发方向又如何?解:(1)J= p(CO2) p(H2)/ p(CO) p(H2O)=1逆向自发 (2) J=0.045 219Pa第四章 统计热力学基本概念及定律 练 习 题4-1 一个系统中有四个可分辨的粒子,这些粒子许可的能级为e0 = 0, e1 =, e2=2, e3 = 3,其中为某种能量单位,当系统的总量为2时,试计算: (1)若各能级非简并,则系统可能的微观状态数为多少? (2)如果各能级的简并度分别为g0 =1,g1 =3,g2 =3,则系统可能的微观状态数又为多少?解:(1) 许可的分布2,2,0,03,0,1,0,微观状态数为+=10(2) 微观状态数为g02 g12+ g03 g2 =664-3 已知某分子的第一电子激发态的能量比基态高400kJmo1-1,且基态和第一激发态都是非简并的,试计算:(1) 300K时处于第一激发态的分子所占分数; (2)分配到此激发态的分子数占总分子数10%时温度应为多高?解:(1) N 0N , N1/N =exp-e / (kT)= 2.210-70(2)q1+ exp-e / (kT) , N 0: N1=9 , exp-e / (kT)=1/9, T=2.2104K4-4 N2分子在电弧中加热,根据所测定的光谱谱线的强度,求得处于不同振动激发态的分子数Nv与基态分子数N0之比如下表所示:振动量子数123Nv / N00.2610.0690.018请根据以上条件证明火焰中气体处于热平衡态。解:气体处于热平衡Nv / N0=exp-h/( kT), N1:N2:N30.261:0.261 2:0.261 34-5 N个可别粒子在e0 = 0, e1 = kT, e2 = 2kT三个能级上分布,这三个能级均为非简并能级,系统达到平衡时的内能为1000kT,求N值。解:q=1+exp(-1)+exp(-2)=1.503 , N0= Nexp(-0) / q , N1= Nexp(-1) / q , N2= Nexp(-2) / q1000kT= N0e0+ N1e1+ N2e2 , N= 23544-6 HCl分子的振动能级间隔为5.9410-20 J,试计算298.15K某一能级与其较低一能级上的分子数的比值。对于I2分子,振动能级间隔为0.4310-20 J,试作同样的计算。解:Nj+1 / Nj =exp-e / (kT) , 对HCl分子比值为5.3710-7, 对I2分子比值为0.352.第五章统计热力学基本方法 练 习 题5-7 已知HBr分子在转动基态上的平均核间距离r1.41410-10 m,求HBr分子的转动惯量、转动特征温度、298.15K时的转动配分函数以及HBr气体的摩尔转动熵。解:转动惯量I=r2 =3.3110-47kg.m2 , rh2/(82Ik)=12.1KqrT/r =24.63 , Sm,rR(1+lnqr)=35 JK-1mol-15-8 计算Na(g)在298.15K和101325Pa时的标准摩尔Gibbs自由能。解:q=(2mkT/ h2)3/2(RT/), =RT(lnq-lnN)= -213.2 kJmol-15-9 Cl(g)的电子运动基态是四重简并的,其第一激发态能量比基态高87540m-1(波数),且为二重简并。求 (1) 1000K时Cl(g)的电子配分函数; (2) 基态上的分子数与总分子数之比;(3) 电子运动对摩尔熵的贡献。(提示:hc,其中是波数,光速c2.998108 ms-1)解:ge,0=4 ge,1=2 ,0=0, 1-0= hc,q= ge,0+ ge,1exp-hc/ (kT)= 4.57N0/N= ge,0/ q=87.6% , Sm,eRln q + ge,1exp-hc/ (kT) hc/ (kT)/ (T q)= 13.9J.K.mol-15-10 已知2000K时,AB双原子分子的振动配分函数 =1.25, ( 为振动基态能量规定为零的配分函数 )(1)求振动特征温度; (2)求处于振动基态能级上的分布分数N0/N。解:=1/1-exp(-v/T)= 1.25 , v=3219K , N0/N=1/=0.805-11 NO晶体是由它所形成的二聚体N2O2分子所组成该分子在晶格中 可有两种随机取向: 和 求NO晶体 在0K时的剩余熵。解:剩余熵= k ln (2N/2)= 2.88JK1mol15-12 已知HCl(g)分子的平衡核间距为1.27510-10 m,振动频率为86.271012 s-1,求HCl在298.15K及101325Pa作为理想气体的标准摩尔统计熵,并与量热法得出的标准量热熵186.2 J.K.mol-1进行比较。解:Sm,tR(3lnM r/2+5lnT/2 1.165)=153.6 J.K.mol-1 ,I=r2 =2.610- 47kg.m2 , Sm,rRln(IT) +105.54=33.1 J.K.mol-1 ,v=4141K ,Sm,r0.0001 J.K.mol-1 HCl(g) 作为理想气体的标准摩尔统计熵为186.7 JK-1mol-5-13 试分别计算300K和101325Pa时气体氩(Ar)和氢分子(H2)平动的N / qt值,以说明不可别粒子系统通常ni gi。解:由qt1.881026 (MrT)3/2V 求出 N / qt= 1.881026 (MrT)3/2 (kT/p)-1 气体氩(Ar): N / qt=9.9210-8 , 氢分子(H2): N / qt=8.7510-6N / qt1 , exp-t/ (kT)=1所以 ni (水)+ (汞-水), 能铺展6-8 将正丁醇(Mr=74)蒸气骤冷至0,发现其过饱和度p* / p*0 = 4时能自动凝结为液滴,若273K时正丁醇表面张力=0.0261Nm-1;密度=1000 kg m-3 ;试计算在 此过饱和度所凝结成液滴的半径及液滴所含分子数。解:r=RTln(pr/p0)/(2Mr)= 1.2310-9m , N = 4r3NA/(3 Mr)= 636-9 某晶体相对分子质量是80,在300K其密度为0.9kg dm-3;若晶体与溶液间界面张力为0.2Nm-1。微小晶体直径为0.110-6m,.则该小晶体溶解度是大块晶体溶解度的多少倍?解: RTln(cr/c0)= 2Mr/(r) , ln(cr/c0)= 0.285 , cr/c0=1.336-10 19时丁酸水溶液的表面张力系数可以表示为=0+b1n(1+ c/ K),式中0为水的表面张力系数、b、K为常数,c为丁酸在水中的浓度。 (1)试求该溶液中丁酸的表面超量与浓度c的关系。 (2)若已知b=1.3110-4 N m-1,K=5.09710-2 mol dm-3,试求当c=0.200 mol dm-3时的。 (3)计算当c/K1时的为多少?若此时表面层丁酸成单分子层吸附,试计算丁酸分子的截面积?解:(1)(d/dc)= b/(K+c),=-c/(RT)(d/dc) = bc/RT(K+c) (2)=4.3 10-8 mol m-2 , (3)c/K1时=b/(RT)= 5.410-8 mol m-2 ,A0=1/(NA)= 3.1 10-17 m26-11 某温度下,铜粉对氢气吸附服从Langmuir公式,其具体形式为 ,式中V是铜粉对氢气的吸附量(273.15K,下的体积), p是氢气压力。已知氢分子横截面积为13.10810-22m3,求1kg铜粉的表面积。解:V=VKp/(1+Kp) ,求出 V=1.36 dm3kg-1 ,a0= VA0 NA/22.4=48 m2kg-16-12 在-192.4时,用硅胶吸附N2气。测定在不同平衡压力下,每千克硅胶吸附N2的体积(标准状况)如下:p/(kPa) 8.886 13.93 20.62 27.73 33.77 37.30V/(dm3) 33.55 36.56 39.80 42.61 44.66 45.92已知-192.4时N2的饱和蒸气压为147.1kPa, N2分子截面积为16.210-20m2,用BET公式求所用硅胶比表面积。解:处理数据,以p/V(p*-p)对p/p* 作图,直线的斜率0.17103 dm3 ,截距28.3103 dm3 ,V1/(斜率截距)35.12 dm3,a0= VA0 NA/22.4=1.53105m2 kg-16-14 含Fe2Oa浓度为1.5 kg m-3的溶胶,稀释10000倍后,在超显微镜下观察,数出视野中颗粒平均为4.1个(视野面积为半径4.010-5m的圆,厚度4.010-5m),已知质点的密度p为5.2103kg m-3,设胶粒为球形,试计算此胶粒平均半径。解:4r3 /3 = cV/(N) , 求出r= 0.710-7m 6-15 Fe(OH)3溶胶于298K 通电45分钟,界面移动10mm电场强度为2 Vcm-1已知水的相对电容率为79,粘度为0.8910-3 Pa s,求溶胶的电势?(真空电容率=8.85410-12 F m-1)解:=u/(D)(d/dl)-1=0.0236V6-16 在298K时,膜两边离子初始浓度分布如下,左边RCl溶液浓度为0.1mol dm-3,体积为1dm3,右边NaCl溶液浓度为0.1mol dm-3,体积为2dm3,问达到膜平衡后,其渗透压为多少?(RCl为高分子电解质,假设完全电离,达到膜平衡前后,两边溶液体积不变)。解:膜平衡 (0.1+2x)2x=(0.1-x)2, 解出x=0.0215 mol dm-3 , c =0.129 mol dm-3=c RT=320kPa6-17 某一大分子溶液在300K时,测得有关渗透压的数据为 c /(g dm-3) 0.5 1.00 1.50 (/c)/(Pa g -1dm3) 101.3 104.3 106.4试求此大分子的数均分子量。解:以(/c)对c作图,直线的截距98 Pa g -1dm3 ,RT/截距2.510 4 g mol-1 第四篇 化学动力学第七章 基元反应动力学 练 习 题7-2 基元反应,2A(g)+B(g)E(g),将2mol的A与1mol的B放入1升容器中混合并反应,那么反应物消耗一半时的反应速率与反应起始速率间的比值是多少?:解:A:B= 2:1 , 反应物消耗一半时 A=0.5A0 ,B= 0.5B0 , r = kA2 B r : r0= 1 : 87-3 反应aA=D,A反应掉15/16所需时间恰是反应掉3/4所需时间的2倍,则该反应是几级。解:r = kAn , n=1时 t = ln (A0/A)/k , t (15/16) : t (3/4) = ln16/ ln4 = 27-4 双分子反应2A(g)B(g) + D(g),在623K、初始浓度为0.400mol dm3时,半衰期为105s,请求出 (1) 反应速率常数k (2) A(g)反应掉90%所需时间为多少? (3) 若反应的活化能为140 kJ mol-1, 573K时的最大反应速率为多少?解:(1) r = kA2 , t 0.5= 1/(2 kA0) , k = 0.012dm3mol-1s-1(2) 1/A 1/A0 =2 k t , t = 945 s(3) ln(k/k)=(Ea/R)(1/T -1/T) , 573K时k = 0.00223dm3mol-1s-1, 最大反应速率rmax = kA02=3.6104 moldm-3s-1.7-5 500K时气相基元反应A + B = C, 当A和B的初始浓度皆为0.20 mol dm-3时,初始速率为5.010-2 mol dm-3 s-1 (1) 求反应的速率系数k;(2)当反应物A、B的初始分压均为50 kPa(开始无C),体系总压为75 kPa时所需时间为多少?解:(1) r0 = kA0 B0 , k =1.25 dm3 mol-1 s-1(2) p0(A) = p0(B) , r = kp p (A) 2 , p =2 p0(A) - p (A) , p (A)= p0(A)/ 2 , kp = k/(RT) , t1/2 =1/ kp p0(A) = 66 s7-6 已知在540727K之间和定容条件下,双分子反应CO(g)+ NO2(g)CO2(g)+NO(g)的速率系数k表示为k / (mol-1 dm3 s-1) = 1.21010expEa /(RT),Ea= -132 kJ mol-1。若在600K时,CO和NO2的初始压力分别为667和933Pa,试计算: (1) 该反应在600K时的k值; (2) 反应进行10 h以后,NO的分压为若干。解:(1) T =600K时的k=0.0386 dm3mol-1s-1值(2) kp = k/(RT) =7.7510-9 Pa s-1 , NO的分压为p ;ln p0,B (p0,A- p)/ p0,A (p0,B- p)/( p0,A- p0,B)= kt ; p=142Pa7-7 N2O(g)的热分解反应为从实验测出不同温度时各个起始压力与半衰期值如下:T/K96796710301030 po/kPa156.78739.1977.066 47.996t1/2/s38015201440212(1) 求反应级数和两种温度下的速率系数kp和kc 。(2)求活化能Ea。(3)若1030K时N2O(g) 的初始压力为54.00 kPa,求压力达到64.00kPa时所需时间。解:(1) r = kp p 2 , t1/2 =1/(2 kp p0 ) , kp = kc / (RT); 967K时; kp =0.8410-5kPa-1s-1 , kc =0.068dm3mol-1s-11030K时; kp = 4.9210-5 kPa-1s-1, kc =0.42 dm3mol-1s-1(2)活化能Ea=240.6kJmol-1 (3) p0=,54.00 kPa 1/p - 1/p0 =2 kpt ; t =111s7-8 某天然矿含放射性元素铀,其蜕变反应为 设已达稳态放射蜕变平衡,测得镭与铀的浓度比保持为Ra/U=3.4710-7 ,产物铅与铀的浓度比为Pb/U=0.1792 ,已知镭的半衰期为1580年,(1)求铀的半衰期(2)估计此矿的地质年龄(计算时可作适当近似)。.解:(1)稳态 dRa/dt= kUU-kRaRa=0, kU/ kRa=Ra/U=3.4710-7 , 镭的半衰期t0.5=ln2/ kRa铀的半衰期t0.5=ln2/ kU=4.55109年 (2) U0-U =Pb,lnU/ U0=- kUt , t=1.08 109年7-9 硝基异丙烷在水溶液中与碱的中和反应是二级反应,其速率系数可用下式表示 (1)计算反应的活化能(2)在283K时,若硝基异丙烷与碱的浓度均为8.0 10-3mol.dm-3 ,求反应的半衰期。解:(1)Ea/(2.303R)=3163K, Ea=60.56 kJ.mol-1 , *(2)k=5.17 mol-1.dm3 min-1 , t0.5=1/( kc0)= 24 min7-10 某溶液含有NaOH和CH3COOC2H5 ,浓度均为1.0010-2mol.dm-3 , 298 K时反应经过10min有39%的CH3COOC2H5分解,而在308 K时,10分钟有55%分解,计算:(1)该反应的活化能。(2)288K时,10分钟能分解多少?(3)293K时,若有50%的CH3COOC2H5分解需时多少?解:(1)1/A-1/A0= k t , k(298 K)= 6.39 mol-1.dm3 min-1 ,k(308 K)=12.22 mol-1.dm3 min-1Ea=Rln(k1/k2)(1/T2-1/T1)= 49.4kJ.mol-1(2)288K时,k=3.2 mol-1.dm3 min-1, t =10 min A0-A/ A0=24.2% (3)293K时, k=4.55 mol-1.dm3 min-1, t0.5=1/( kA0)= 22min 7-11 两个二级反应1和2具有完全相同的频率因子,反应1的活化能比反应2的活化能高出10.46kJmol1;在 373K时,若反应1的反应物初始浓度为0.1moldm3,经过60min后反应1已完成了30%,试问在同样温度下反应2的反应物初始浓度为0.05moldm3时, 要使反应2完成70%需要多长时间(单位min)?解: 1/A-1/A0= k t , 反应1: k1= 7.1410-2 mol-1.dm3 min-1 , ln(k1/k2) = -10.46103/ (RT) ,k2=2.08 mol-1.dm3 min-1 .反应2: t=22.4min7-12 氧化乙烯的热分解是单分子反应,在651K时,分解50%所需时间为363min,活化能Ea=217.6 kJmol1,试问如要在120min内分解75%,温度应控制在多少K?解:651K时: k1=ln2/ t0.5=0.00191min-1 . 温度T: t0.5= 60min , k2=0.01155 min-1, T=682K7-13 请计算在298K恒容下,温度每增加10K Ea= kJmol1(1) 碰撞频率增加的百分数;(2) 有效碰撞分数增加的百分数,由此可得出什么结论?(Ea=56.0 kJmol1)解:(1) Z2/Z1=(T2/T1)0.5=1.017 , 增加的百分数1. 7%(2) q2/q1=exp-Ea(1/T2-1/T1)/R =2.08 , 增加的百分数108%7-14 800K时单分子反应的速率系数的高压极值为510-4s-1 ,在相同温度下一级速率系数在4Pa压力下降为此值的一半,计算分子活化步骤的速率系数(以浓度单位表示)解:kapp= k2 k+1M/( k2+ k-1 M) , 高压极值k2 k+1/ k-1=510-4s-1 , M= 4Pa , kapp= k+1M =2.510-4s-1 , k+1=1.2510-4Pa-1s-1, k+1=8.31102mol-1.dm-3.s-17-15 实验测得丁二烯气相二聚反应的速率系数为 k = 9.2109exp(-)dm3mol-1.s-1 (1)已知此反应()= -60.79J.K-1mol-1 ,试用过渡态理论求算此反应在600K时的指前因子A,并与实验值比较。(2)已知丁二烯的碰撞直径d = 0.5nm ,试用碰撞理论求算此反应在600K时的A值。解释二者计算的结果。解:(1)A=0.5(kT/h)( 1/)exp(/R)e2=3.081010dm3mol-1s-1(2) A=2Ld2RT/(Mr)0.5e0.5=2.67108 m3mol-1s-17-16 双环戊二烯单分子气相热分解反应(产物环戊二烯单体)的速率系数如下T / K 473.7 483.7 494.8 502.4 516.2 527.7 k104/ s-1 0.947 2.05 4.50 9.28 27.2 70.7 试确定Arrhenius 参数A 和Ea ,并求活化焓和活化熵(用平均温度500K)解:由log k对1/T作图,直线的斜率为 8.69103 K, 截距为14.28 .求出 A1.91014s-1 , Ea=166 kJ.mol-1 ,= Ea-RT =162 kJ.mol-1 , =R lnA/ (e kT/h)= 15.8J.K-1.mol-1 第八章 复杂反应动力学 练 习 题8-4 某对峙反应 AB ;BA ; 已知 k1=0.006min1, k1=0.002min1. 如果反应开始时只有 A , 问当 A和 B的浓度相等时, 需要多少时间?解:ln(A-Ae)/ (A0-Ae) = -( k1+ k1)t , A=0.5 A0 , ln3= ( k1+ k1)t, t=137 min8-6. 在二硫化碳溶液中,以碘为催化剂,氯苯与氯发生如下平行反应:在温度和碘的浓度一定的条件下, C6H5Cl和 Cl2的起始浓度均为0.5 mol.dm-3 , 30 min 后C6H5Cl 有 15%转变为邻- C6H4Cl2 , 而有25%转变为对- C6H4Cl2 ,求k1和 k2 。解:1/A-1/ A0=( k1+ k2) t , k1 /k2=0.6 , k1+ k2=0.044 mol-1dm3min-1, k1 = 1.6710-2mol-1dm3min-1 k2 = 2.7810-2mol-1dm3min-18-7. 在1189K下,乙酸的气相分解有两条平行的反应途径: ( 1 ) CH3COOH CH4 + CO2 k1 = 3.74 s-1 ( 2 ) CH3COOH H2C=C=O + H2O k2 = 4.65 s-1(1)求乙酸反应掉99%所需的时间;(2)求在此温度下乙烯酮的最大产率。解:(1) ln(A /A0)= -( k1+ k2)t , t= 0.55 s . (2) 最大产率= 4.65/(3.74+ 4.65)=0.5548-8 有正逆方向均为一级的对峙反应: 已知两反应的半衰期均为10 min , 反应从D-R1R2R3C-Br的物质的量为1.00 mol开始,试计算10 min 之后可得L-R1R2R3C-Br若干? 解:k1= k-1=ln2/t0.5=0.0693min-1 , ln(A-Ae)/ (A0-Ae) = -( k1+ k1)t , A0=2Ae , 10 min 之后 A=0.625mol , 可得L-R1R2R3C-Br 0.375 mol8-9. 有气相反应 已知298K时,k1 = 0.21 s-1 , k2 = 510-9 Pa-1.s-1 , 当温度升至310K时,k1和 k2的值都增加1倍。(1)求298K平衡时的压力商;(2)计算正、逆反应的活化能;(3)298K时,A的起始压力为101 kPa , 若使总压达到152 kPa , 需要多少时间? 解:(1)平衡时的压力商=Kp= k1/ k2= 4.2107 Pa (2)Ea(1)= Ea(2)=Rln(k/k)(1/T-1/T)= 44.36 kJ.mol-1 (3) k1 k2p , 忽略逆反应,ln(pA / pA,0)= - k1t , p(总)= 2 pA,0- pA , t =3.3s.8-14 今有反应: 2 NO(g) + 2 H2(g) N2(g) + 2 H2O( l ) 。NO和H2的起始浓度相等,当采用不同的起始压力时,得不同的半衰期,实验数据如下: p0 / kPa47.20 45.4 0 38.40 33.46 26.93 t1/2 / min 81 102 14 0 180 224 求该反应的级数。解:r= k p n , 由ln t1/2对ln p0作图,直线的斜率为 1.8,.求出n=2.88-15. 二氧化氮的热分解为二级反应,已知不同温度下的反应速率系数k的数据如下:T/ K592 603.2 627 651.5 656k/(mol-1cm3s-1)522 755 1700 4020 5030 (1)确定反应速率系数与温度的函数关系式;(2)求500K和700K时的反应速率系数。 解:(1)由ln k对1/T作图,直线的斜率为 1.36104 K, 截距为29.13 .求出 (2) k(500) = 7.4 mol-1.cm3.s-1, k(700) = 1.72104mol-1.cm3.s-18-16. 在100 cm3的反应器中盛有H2和Cl2,以400 nm 的光照射反应器,实验测得Cl2吸收光能的速率为1.110-6 J s-1。 照射1 min 后,测得Cl2的分压由27.3 kPa降至20.8 kPa (已校正为273K) 。求产物HCl的总量子效率。解:n(Cl2)=pV/(RT)=2.8610-4mol , 吸收光子 n = Iat / (Lhc/) = 2.210-10 mol , 量子效率=n(Cl2)/ n=2.61068-17 在0.059 dm3的反应器中盛有气态丙酮,在840K下,以313 nm 的光照射,发生下列分解反应: (CH3)2CO + h C2H6 + CO 已知入射光能为48.110-4 J.s-1,而丙酮吸收入射光的分数为0.195, 照射7 h后反应气体的压力由 102.16 kPa变为104.42 kPa 。试计算该反应的量子效率。解:n(丙酮)=pV/(RT)=1.9110-5 mol,吸收光子 n = Ia t/ (Lhc/) = 6.1810-5 mol量子效率=n(丙酮)/ n=0.3098-18. 丁二酸钠(S)在酶(E,丁二烯脱氢酶)的作用下,氧化生成反丁烯二酸钠。依次改变丁二酸钠浓度下,测得相应的初速率,数据如下:S / (10-3mol dm-3)10.0 2.0 1.0 0.5 0.33r0 / (10-6 mol dm-3s-1) 1.17 0.99 0.79 0.62 0.50 求反应的极限速率和米氏常数。解:)由1/ r0 对1/S作图, 直线的斜率为 0.39103 s, 截距为0. 83106 (mol dm-3s-1)-1 .求出极限速率rm=1.210-6mol dm-3s-1 , 米氏常数4.710- 4mol.dm-38-19 乙烷催化氢化反应可表示如下: 在464K时测得有关数据如下:p(H2) / kPa10 40 20 20 p(C2H6) / kPa 3.0 3.0 3.0 1.0r / r0 4.10 0.25 1.00 0.32 其中r 代表反应速率,r0 是当p(H2) = 20 kPa 和 p(C2H6) = 3.0 kPa时的反应速率。若反应的速率公式可表示为 试根据上列数据求出m和n的值。解:lnr= lnk+ nln p(H2)+ m ln p(C2H6) ,解方程得n = - 2, m = 18-20 下述反应被酸催化: 若反应的速率公式可表示为 r = k Co(NH3)5F2+H+ 在一定的温度及初始浓度条件下测得两组分数寿期数据如下: T / K298 298 308 Co(NH3)5F2+/(mol.dm-3) H+ / mol.dm-3 t1/2 / (102s) t1/4 /(102s) 0.1 0.2 0.10.01 0.02 0.01 36 18 18 72 36 36 (1)求反应级数和的值; (2)求不同温度时的反应速率系数k值; (3)计算反应的实验活化能Ea的值。 解:(1)酸催化 r = k Co(NH3)5F2+, k= k H+0 ,2 t1/2 = t1/4 , =1 . t1/2/ t1/2 =(H+/H+) ,=1 . (2) t1/2 =ln2/ k , k(298) = 0.019 mol-1.dm3.s-1, k(308) = 0.039 mol-1.dm3.s-1 . (3)Ea=52.9 kJ.mol-1 第九章电化学基础知识 练 习 题9-1 291K时将0.1 mol dm-3 NaC1溶液放入直径为2mm的迁移管中,管中两个Ag-AgC1电极的距离为20cm,电极间电势降为50V。如果电势梯度稳定不变。又知291K时Na+和C1-的电迁移率分别为3.7310-8和5.9810-8 m2 V-1 s-1,问通电30分钟后:(1)各离子迁移的距离;(2)各离子通过迁移管某一截面的物质的量;(3)各离子的迁移数。解:(1)离子迁移的距离L(Na+)= U(Na+) (d/dl)t =0.0168m , L(C1-)=0.0269m(2)n(Na+)=r2c(Na+) L(Na+)=5.2710-6mol , n(C1-)=8.4510-6mol(3)t(Na+)= U(Na+)/ U(Na+)+ U(C1-)=0.384 , t (C1-)=0.616 9-2 用银作电极电解 AgNO3溶液,通电后有0.078克银在阴极沉积出来,经分析知阳极区含有 AgNO30.236克,水23.14克,而未电解前的溶液为每克水含有0.00739克AgNO3,试求Ag离子的迁移数。解:n(电解)= 0.078/108 mol , n(前)= 0.0073923.14/170 mol, n(后)= 0.236/170 mol n(迁移) = n(前) - n(后) + n(电解) , t(Ag)= n(迁移)/ n(电解)= 0.479-3 某电导池先后充以0.001mol dm-3 的 HCl、0.001mol dm-3 的NaCl和 0.001mol dm-3 的NaNO3三种溶液,分别测得电阻为468,1580和1650.已知NaNO3 的摩尔电导率为121 S cm2mol-1,如不考虑摩尔电导率随浓度的变化, 试计算 (1) 0.001mol dm-3NaNO3 溶液的电导率? (2) 电导池常数l/A (3)此电导池中充以0.001mol dm-3HNO3溶液的电阻和HNO3的电导率?解:(1) = c=1.2110-4S cm-1 (2) l/A =/G =0.2cm-1 (3) ( HNO3)=( HCl)+( NaNO3)-( NaCl) , 电导池、浓度相同时有G ( HNO3)= G ( HCl)+ G ( NaNO3)- G ( N
展开阅读全文