资源描述
第十二章 概率和统计一基础题组1.【20xx四川,理1】有一个容量为66的样本,数据的分组及各组的频数如下:11.5,15.5) 2 15.5,19.5) 4 19.5,235) 9 23.5,27.5) 18 27.5,31.5) 11 31.5,35.5) 12 35.539.5) 7 39.5,43.5) 3 根据样本的频率分布估计,数据落在31.5,43.5)的概率约是( ) (A) (B) (C) (D)2. 【20xx高考四川,理17】某市A,B两所中学的学生组队参加辩论赛,A中学推荐3名男生,2名女生,B中学推荐了3名男生,4名女生,两校推荐的学生一起参加集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队(1)求A中学至少有1名学生入选代表队的概率.(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X表示参赛的男生人数,求X得分布列和数学期望.【答案】(1)A中学至少1名学生入选的概率为.(2)X的分布列为:X的期望为.【考点定位】本题考查随机事件的概率、古典概型、随机变量的分布列、数学期望等基础知识,考查运算求解能力、应用意识,考查运用概率与统计的知识与方法分析和解决实际问题的能力.二能力题组1.【2007四川,理12】已知一组抛物线,其中a为2,4,6,8中任取的一个数,b为1,3,5,7中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线x=1交点处的切线相互平行的概率是( )(A)(B)(C)(D)【答案】B 2.【20xx四川,理12】在集合中任取一个偶数和一个奇数构成以原点为起点的向量.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为,其中面积不超过的平行四边形的个数为,则( )(A) (B) (C) (D)【答案】D3.【20xx四川,理9】节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )(A) (B) (C) (D)【答案】C【考点定位】本题考查不等式(组)表示平面区域的作法,几何概率的计算,适度强化了不同模块间的联系与综合,解题的关键是理解题意,特别是对最后一句话的理解.三拔高题组1.【2007四川,理18】厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.()若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验.求至少有1件是合格品的概率;()若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出不合格产品数的分布列及期望,并求该商家拒收这批产品的概率.【答案】(1);(2)分布列略;.【考点】本题考察相互独立事件、互斥事件等的概率计算,考察随机事件的分布列,数学期望等,考察运用所学知识与方法解决实际问题的能力.2.【2008四川,理18】(本小题满分12分) 设进入某商场的每一位顾客购买甲种商品的概率为,购买乙种商品的概率为,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的. ()求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;()求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;()记表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求的分布列及期望.【答案】:();();().【点评】:此题重点考察相互独立事件的概率计算,以及求随机变量的概率分布列和数学期望;【突破】:分清相互独立事件的概率求法,对于“至少”常从反面入手常可起到简化的作用;3.【2009四川,理18】(本小题满分12分)为振兴旅游业,四川省2009年面向国内发行总量为2000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡).某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中是省外游客,其余是省内游客.在省外游客中有持金卡,在省内游客中有持银卡.(I)在该团中随机采访3名游客,求恰有1人持金卡且持银卡者少于2人的概率;(II)在该团的省内游客中随机采访3名游客,设其中持银卡人数为随机变量,求的分布列及数学期望.【答案】(I);(II)分布列略,2.4.【20xx四川,理17】(本小题满分12分)某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料.()求甲中奖且乙、丙都没有中奖的概率;()求中奖人数的分布列及数学期望E.【答案】();()分布列略,.【解析】()设甲、乙、丙中奖的事件分别为A、B、C,那么答:甲中奖且乙、丙都没有中奖的概率是(6分)()的可能取值为0,1,2,3.所以中奖人数的分布列为0123P【考点】()主要考查相互独立事件同时发生的概率;()考查离散型随机变量的分布列问题,然后利用期望公式求其期望.5.【20xx四川,理18】(本小题共12分)本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的收费标准为2元(不足1小时的部分按1小时计算).有人独立来该租车点则车骑游.各租一车一次.设甲、乙不超过两小时还车的概率分别为;两小时以上且不超过三小时还车的概率分别为;两人租车时间都不会超过四小时.()求出甲、乙所付租车费用相同的概率;()求甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望;【答案】();().6.【20xx四川,理17】 (本小题满分12分) 某居民小区有两个相互独立的安全防范系统(简称系统)和,系统和在任意时刻发生故障的概率分别为和。()若在任意时刻至少有一个系统不发生故障的概率为,求的值;()设系统在3次相互独立的检测中不发生故障的次数为随机变量,求的概率分布列及数学期望。7.【20xx四川,理18】(本小题满分12分) 某算法的程序框图如图所示,其中输入的变量在这个整数中等可能随机产生()分别求出按程序框图正确编程运行时输出的值为的概率();()甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行次后,统计记录了输出的值为的频数以下是甲、乙所作频数统计表的部分数据当时,根据表中的数据,分别写出甲、乙所编程序各自输出的值为的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大;()按程序框图正确编写的程序运行3次,求输出的值为2的次数的分布列及数学期望【答案】(),;()乙同学所编程序符合算法要求的可能性较大,()1【考点定位】本小题主要考查算法与程序框图、古典概率、独立重复试验、随机变量的分布列、数学期望、频数、频率等概念及相关计算,考查运用统计与概率的知识与方法解决实际问题的能力,考查数据处理能力、应用意识和创新意识算法、统计、概率、分布列、数学期望等相关概念不熟,从超长的题干中提取数据被无关信息干扰,或计算出错.8.【20xx四川,理17】一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为,求的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.【答案】(1);(2);(3)每盘所得分数的期望为负数,所以玩得越多,所得分数越少.【考点定位】1、随机变量的分布列;2、独立重复事件的概率;3、统计知识.
展开阅读全文