资源描述
【走向高考】(全国通用)20xx高考数学二轮复习 第一部分 微专题强化练 专题7 解三角形一、选择题1(文)(20xx·唐山市一模)在直角梯形ABCD中,ABCD,ABC90°,AB2BC2CD,则cosDAC()A.B.C. D.答案B解析由已知条件可得图形,如图所示,设CDa,在ACD中,CD2AD2AC22AD×AC×cosDAC,a2(a)2(a)22×a×a×cosDAC,cosDAC.方法点拨解三角形的常见类型:(1)已知两角和一边,如已知A,B和c,由ABC求C,由正弦定理求a,b.(2)已知两边和这两边的夹角,如已知a、b和C,应先用余弦定理求c,再应用正弦定理先求较短边所对的角,然后利用ABC求另一角(3)已知两边和其中一边的对角,如已知a、b和A,应先用正弦定理求B,由ABC求C,再由正弦定理或余弦定理求c,要注意解的讨论(4)已知三边a、b、c,可应用余弦定理求A、B、C.(理)(20xx·河南六市联考)在锐角ABC中,角A、B、C所对的边分别为a、b、c,若sinA,a2,SABC,则b的值为()A.B.C2D2答案A解析由已知得:cosA,SABCbcsinAbc×,bc3,又由余弦定理得:a2b2c22bccosA,即b2c224,b2c26,bc2,解得bc,选A.2(20xx·南昌市一模)在ABC中,角A,B,C所对的边分别是a,b,c,c1,B45°,cosA,则b等于()A. B.C. D.答案C解析因为cosA,所以sinA,所以sinCsin(AB)sin(AB)sinAcosBcosAsinBcos45°sin45°.由正弦定理,得b×sin45°.3(文)若三角形ABC中,sin(AB)sin(AB)sin2C,则此三角形的形状是()A等腰三角形B直角三角形C等边三角形D等腰直角三角形答案B解析sin(AB)sin(AB)sin2C,sin(AB)sinC0,sin(AB)sin(AB),cosAsinB0,sinB0,cosA0,A为直角(理)(20xx·合肥第一次质检)在ABC中,已知2acosBc,sinAsinB(2cosC)sin2,则ABC为()A等边三角形B等腰直角三角形C锐角非等边三角形D钝角三角形答案B解析依题意得2sinAcosBsinCsin(AB),2sinAcosBsin(AB)sin(AB)0,因此BA,C2A,于是有sin2A(2cos2A)cos2A,即sin2A(32sin2A)1sin2A,解得sin2A,因此sinA,又BA必为锐角,因此BA,ABC是等腰直角三角形,故选B.易错分析本题易犯的主要错误是不能对所给恒等式进行有效化简、变形,由于公式应用错误或者化简过程的盲目性导致化简过程无效,这是很多考生在此类问题中常犯的错误事实上,含有边和角的恒等式,一般方法是实施边和角的统一,如果边化角后无法运算,则可以尝试角化边反之,如果角化边较繁,则可以尝试边化角,平时训练时就要注意归纳小结方法点拨判断三角形形状时,一般先利用所给条件将条件式变形,结合正余弦定理找出边之间的关系或角之间的关系由于特殊的三角形主要从正三角形、等腰三角形、直角三角形、锐角三角形、钝角三角形方面命题,故分析条件时,应着重从上述三角形满足的条件与已知条件的沟通上着手4(文)在ABC中,角A、B、C的对边分别为a、b、c,若(a2c2b2)tanBac,则角B的值为()A. B.C.或 D.或答案D解析由(a2c2b2)tanBac得,·tanB,再由余弦定理cosB得,2cosB·tanB,即sinB,角B的值为或,故应选D.(理)在ABC中,已知b·cosCc·cosB3a·cosB,其中a、b、c分别为角A、B、C的对边,则cosB的值为()A.BC.D答案A解析由正弦定理得sinBcosCsinCcosB3sinAcosB,sin(BC)3sinAcosB,sinA3sinAcosB,sinA0,cosB.方法点拨给出边角关系的一个恒等式时,一般从恒等式入手化边为角或化角为边,再结合三角公式进行恒等变形,注意不要轻易对等式两边约去同一个因式5(文)(20xx·辽宁葫芦岛市一模)在ABC中,内角A,B,C所对的边分别是a,b,c.若c2(ab)26,C,则ABC的面积是()A3 B.C.D3答案C解析由余弦定理得:c2a2b22abcosCa2b2ab(ab)26,ab6,SABCabsinC×6×.(理)在ABC中,ABC,AB,BC3,则sinBAC()A. B.C. D.答案C解析本题考查了余弦定理、正弦定理由余弦定理得AC2AB2BC22AB×BC·cos292××3×5,AC,由正弦定理,sinA.6在锐角ABC中,设xsinA·sinB,ycosA·cosB,则x、y的大小关系为()AxyBx<yCx>yDxy答案C解析yxcosAcosBsinAsinBcos(AB)cos(C)cosC,ABC为锐角三角形,cosC>0,yx<0,y<x.7(20xx·昆明市质检)设ABC的内角A,B,C所对的边分别是a,b,c,若AB边上的高为,且a2b22ab,则C()A. B.C. D.答案B解析由已知得:SABCabsinC×c×,sinC,又由余弦定理得:cosCsinC,即sinCcosC,sin,sin1,C,C.8(文)(20xx·郑州市质检)在ABC中,角A,B,C所对的边分别是a,b,c,已知sin(BA)sin(BA)3sin2A,且c,C,则ABC的面积是()A. B.C. D.或答案D解析由已知得:2sinBcosA3sin2A6sinAcosA,若cosA0,则A,则B,b,SABCbc××;若A,则sinB3sinA,由正弦定理得:b3a,又由余弦定理得:c2a2b22abcosC,即7a29a23a27a2,a1,b3,SABCabsinC×1×3×,选D.(理)(20xx·衡水中学三调)已知ABC的内角A、B、C对的边分别为a、b、c,sinAsinB2sinC,b3,当内角C最大时,ABC的面积等于()A. B.C. D.答案A解析根据正弦定理及sinAsinB2sinC得ab2c,c,cosC2,当且仅当,即a时,等号成立,此时sinC,SABCabsinC××3×.二、填空题9已知ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则ABC的面积为_答案15解析设三角形的三边长分别为a4,a,a4,最大角为,由余弦定理得(a4)2a2(a4)22a(a4)·cos120°,则a10,所以三边长为6,10,14.ABC的面积为S×6×10×sin120°15.方法点拨有关数列与三角函数知识交汇的题目,利用正余弦定理将数列关系式或数列问题转化为三角函数问题,用三角函数知识解决10(文)(20xx·福建理,12)在ABC中,A60°,AC4,BC2,则ABC的面积等于_答案2解析本题考查正弦定理及三角形的面积公式,由正弦定理得,sinB1,B90°,AB2,S×2×22.(理)(20xx·天津理,12)在ABC中,内角A、B、C所对的边分别是a、b、c,已知bca,2sinB3sinC,则cosA的值为_答案解析2sinB3sinC,2b3c,又bca,ba,ca,cosA.11(20xx·南京二模)在ABC中,已知AB2,BC3,ABC60°,BDAC,D为垂足,则·的值为_答案解析利用余弦定理求出AC的长度,再利用面积公式求出BD,最后利用数量积的定义求解在ABC中,由余弦定理可得AC2492×2×3×7,所以AC,由ABC的面积公式可得×2×3××BD,解得BD.所以··()|2.方法点拨解答三角函数与平面向量交汇的题目,先运用向量的有关知识(平行、垂直、数量积的坐标表示等)脱去向量外衣再运用三角函数知识解决或先利用三角函数或解三角形的有关知识求出需要的量(边的长度、角的大小)再进行向量运算三、解答题12(文)(20xx·新课标文,17)已知a,b,c分别为ABC内角A,B,C的对边,sin2B2sin Asin C.(1)若ab,求cos B;(2)设B90°,且a,求ABC的面积分析(1)本小题可先利用正弦定理,根据题设得出三角形的三条边长之间的关系,再利用余弦定理求出cos B;(2)本小题中已知角B为直角,利用勾股定理列出方程,再结合()中a、c的关系式求出边长c,即可求出ABC的面积解析(1)由题设及正弦定理可得b22ac.又ab,可得b2c,a2c.由余弦定理可得cos B.(2)由(1)知b22ac.因为B90°,由勾股定理得a2c2b2.故a2c22ac,得ca.所以ABC的面积为SABCac1.(理)(20xx·山西太原市一模)已知a,b,c分别是ABC的角A,B,C所对的边,且c2,C.(1)若ABC的面积等于,求a,b;(2)若sinCsin(BA)2sin2A,求A的值解析(1)c2,C,由余弦定理得4a2b22abcosa2b2ab,ABC的面积等于,absinC,ab4,联立解得a2,b2;(2)sinCsin(BA)2sin2A,sin(BA)sin(BA)4sinAcosA,sinBcosA2sinAcosA,当cosA0时,则A,当cosA0时,sinB2sinA,由正弦定理得b2a,联立解得a,b,b2a2c2,C,A,综上所述,A或A.13(文)(20xx·天津文,16)在ABC中,内角A,B,C所对的边分别为a,b,c.已知ABC的面积为3,bc2,cos A.(1)求a和sin C的值;(2)求cos的值分析考查1.正弦定理、余弦定理及面积公式;2三角变换(1)由面积公式可得bc的值,结合bc2,可解得b,c.再由余弦定理求得a.最后由正弦定理求sin C的值;(2)直接展开求值解析(1)在ABC中,由cos A,得sin A,由SABCbcsin A3,得bc24,又由bc2,解得b6,c4.由a2b2c22bccos A,可得a8.由,得sin C.(2)coscos 2Acos sin 2Asin (2cos2A1)×2sin Acos A.(理)(20xx·安徽理,16)设ABC的内角A、B、C所对边的长分别是a、b、c且b3,c1,A2B.(1)求a的值;(2)求sin(A)的值解析(1)因为A2B,所以sinAsin2B2sinBcosB,由正、余弦定理得a2b·,因为b3,c1,所以a212,a2.(2)由余弦定理得cosA,由于0<A<,所以sinA,故sin(A)sinAcoscosAsin×()×.14(文)(20xx·陕西理,16)ABC的内角A、B、C所对的边分别为a,b,c.(1)若a、b、c成等差数列,证明:sinAsinC2sin(AC);(2)若a、b、c成等比数列,求cosB的最小值. 解析(1)a,b,c成等差数列,ac2b,由正弦定理得sinAsinC2sinB.sinBsin(AC)sin(AC),sinAsinC2sin(AC)(2)a,b,c成等比数列,b2ac,由余弦定理得cosB,当且仅当ac时,等号成立cosB的最小值为.(理)在ABC中,角A,B,C的对边分别为a、b、c,已知sinAsinBsinBsinCcos2B1.(1)求证:a,b,c成等差数列;(2)若C,求的值解析(1)由已知得sinAsinBsinBsinC2sin2B,因为sinB0,所以sinAsinC2sinB.由正弦定理,有ac2b,即a,b,c成等差数列(2)由C,c2ba及余弦定理得(2ba)2a2b2ab,即有5ab3b20,所以.15(文)在ABC中,已知a2tanBb2tanA,试判断ABC的形状分析条件式a2tanBb2tanA是边a、b与角A、B的关系,可用正弦定理化边为角,将“切化弦”,然后,通过三角变形探究A与B之间的关系判断形状;也可以应用正弦定理和余弦定理化角为边,再通过代数变形探寻边之间的关系后判断形状解析解法1:由正弦定理得a2RsinA,b2RsinB.(2RsinA)2(2RsinB)2,sinAcosAsinBcosB.sin2Asin2B,2A2B或2A2B,即AB或AB.ABC为等腰或直角三角形. 解法2:a2tanBb2tanA,.由正弦定理得.由余弦定理得cosB,cosA.·,整理得(a2b2)(c2a2b2)0.ab或a2b2c2,ABC为等腰或直角三角形(理)在ABC中,角A、B、C所对的边分别为a、b、c,<C<且.(1)判断ABC的形状;(2)若|2,求·的取值范围解析(1)由得,.由正弦定理得sinBsin2C.所以B2C或B2C.若B2C,由<C<知<2C<.即<B<,BC>,与三角形内角和为矛盾,故B2C舍去B2C.A(BC)(2CC)C.故ABC为等腰三角形(2)由(1)知ac,|2,|24,a2c22accosB4,cosB,·accosB2a2,cosBcos(2C)cos2C,由<C<知<2C<,1<cos2C<,<cosB<1,<<1,1<a2<,<2a2<1,·的取值范围是(,1)方法点拨“变”是解决三角问题的主题,变角、变名、变表达形式、变换次数等比比皆是,强化变换意识,抓住万变不离其宗即公式不变,方法不变,要通过分析、归类把握其规律.
展开阅读全文