高考数学理一轮资源库 第5章学案22

上传人:仙*** 文档编号:43054361 上传时间:2021-11-29 格式:DOC 页数:10 大小:245KB
返回 下载 相关 举报
高考数学理一轮资源库 第5章学案22_第1页
第1页 / 共10页
高考数学理一轮资源库 第5章学案22_第2页
第2页 / 共10页
高考数学理一轮资源库 第5章学案22_第3页
第3页 / 共10页
点击查看更多>>
资源描述
精品资料第5章解三角形与平面向量学案22正弦定理和余弦定理导学目标: 1.利用正弦定理、余弦定理进行边角转化,进而进行恒等变换解决问题.2.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题自主梳理1三角形的有关性质(1)在ABC中,ABC_;(2)ab_c,ab<c;(3)a>bsin A_sin BA_B;(4)三角形面积公式:SABCahabsin Cacsin B_;(5)在三角形中有:sin 2Asin 2BAB或_三角形为等腰或直角三角形;sin(AB)sin C,sin cos .2正弦定理和余弦定理定理正弦定理余弦定理内容_2Ra2_,b2_,c2_变形形式a_,b_,c_;sin A_,sin B_,sin C_;abc_;cos A_;cos B_;cos C_解决的问题已知两角和任一边,求另一角和其他两条边已知两边和其中一边的对角,求另一边和其他两角已知三边,求各角;已知两边和它们的夹角,求第三边和其他两个角.自我检测1(2010·上海改编)若ABC的三个内角满足sin Asin Bsin C51113,则abc_.2(2010·天津改编)在ABC中,内角A,B,C的对边分别是a,b,c,若a2b2bc,sin C2sin B,则A_.3(2010·烟台一模)在ABC中,A60°,b1,ABC的面积为,则边a的值为_4(2010·山东)在ABC中,角A,B,C所对的边分别为a,b,c.若a,b2,sin Bcos B,则角A的大小为_5(2010·北京)在ABC中,若b1,c,C,则a_.探究点一正弦定理的应用例1(1)在ABC中,a,b,B45°,求角A、C和边c;(2)在ABC中,a8,B60°,C75°,求边b和c.变式迁移1(1)在ABC中,若tan A,C150°,BC1,则AB_;(2)在ABC中,若a50,b25,A45°,则B_.探究点二余弦定理的应用例2已知a、b、c分别是ABC中角A、B、C的对边,且a2c2b2ac.(1)求角B的大小;(2)若c3a,求tan A的值变式迁移2在ABC中,a、b、c分别为A、B、C的对边,B,b,ac4,求a.探究点三正余弦定理的综合应用例3在ABC中,a、b、c分别表示三个内角A、B、C的对边,如果(a2b2)sin(AB)(a2b2)sin(AB),试判断该三角形的形状变式迁移3(2010·天津)在ABC中,.(1)证明:BC;(2)若cos A,求sin的值1解斜三角形可以看成是三角变换的延续和应用,用到三角变换的基本方法,同时它是对正、余弦定理,三角形面积公式等的综合应用2在利用正弦定理解已知三角形的两边和其中一边的对角,求另一边的对角,进而求出其他的边和角时,有可能出现一解、两解或无解的情况,应结合图形并根据“三角形中大边对大角”来判断解的情况,作出正确取舍3在解三角形中的三角变换问题时,要注意两点:一是要用到三角形的内角和及正、余弦定理,二是要用到三角变换、三角恒等变形的原则和方法“化繁为简”“化异为同”是解此类问题的突破口(满分:90分)一、填空题(每小题6分,共48分)1(2010·湖北改编)在ABC中,a15,b10,A60°,则cos B_.2在ABC中,AB3,AC2,BC,则·_.3在ABC中,sin2(a,b,c分别为角A,B,C的对边),则ABC的形状为_4(2011·苏州调研)在ABC中,若A60°,BC4,AC4,则角B的大小为_5(2010·湖南改编)在ABC中,角A,B,C所对的边长分别为a,b,c,若C120°,ca,则a,b的大小关系为_6在ABC中,B60°,b2ac,则ABC的形状为_7(2010·广东)已知a,b,c分别是ABC的三个内角A,B,C所对的边,若a1,b,AC2B,则sin C_.8(2010·福建龙岩高三一模)在锐角ABC中,ADBC,垂足为D,且BDDCAD236,则BAC的大小为_二、解答题(共42分)9(14分)(2009·浙江)在ABC中,角A,B,C所对的边分别为a,b,c,且满足cos,·3.(1)求ABC的面积;(2)若bc6,求a的值10(14分)(2010·陕西)在ABC中,已知B45°,D是BC边上的一点,AD10,AC14,DC6,求AB的长11(14分)(2010·重庆)设ABC的内角A、B、C的对边长分别为a、b、c,且3b23c23a24bc.(1)求sin A的值;(2)求的值答案 自主梳理1(1)(2)>(3)>>(4)bcsin A(5)AB2.b2c22bccos Aa2c22accos Ba2b22abcos C2Rsin A2Rsin B2Rsin C sin Asin Bsin C自我检测1511132.30°3.4.51解析方法一由正弦定理,有,sin B.C为钝角,B必为锐角,B,A.ab1.方法二由余弦定理c2a2b22abcos C得,3a2a1,即a2a20,解得a1,a2(舍去)课堂活动区例1解题导引已知三角形的两边和其中一边的对角,可利用正弦定理求其他的角和边,但要注意对解的情况进行判断,这类问题往往有一解、两解、无解三种情况具体判断方法如下:在ABC中,已知a、b和A,求B.若A为锐角,当ab时,有一解;当absin A时,有一解;当bsin A<a<b时,有两解;当a<bsin A时,无解若A为直角或钝角,当a>b时,有一解;当ab时,无解解(1)由正弦定理得,sin A.a>b,A>B,A60°或A120°.当A60°时,C180°45°60°75°,c;当A120°时,C180°45°120°15°,c.综上,A60°,C75°,c,或A120°,C15°,c.(2)B60°,C75°,A45°.由正弦定理,得b4,c44.b4,c44.变式迁移1(1)(2)60°或120°解析(1)在ABC中,tan A,C150°,A为锐角,sin A.又BC1.根据正弦定理得AB.(2)由b>a,得B>A,由,得sin B×,0°<B<180°,B60°或B120°.例2解(1)a2c2b2ac,cos B.0<B<,B.(2)方法一将c3a代入a2c2b2ac,得ba.由余弦定理,得cos A.0<A<,sin A,tan A.方法二将c3a代入a2c2b2ac,得ba.由正弦定理,得sin Bsin A.由(1)知,B,sin A.又ba>a,B>A,cos A.tan A.方法三c3a,由正弦定理,得sin C3sin A.B,C(AB)A,sin(A)3sin A,sincos Acossin A3sin A,cos Asin A3sin A,5sin Acos A,tan A.变式迁移2解由余弦定理得,b2a2c22accos Ba2c22accosa2c2ac(ac)2ac.又ac4,b,ac3,联立,解得a1,c3,或a3,c1.a等于1或3.例3解题导引利用正弦定理或余弦定理进行边角互化,转化为边边关系或角角关系解方法一(a2b2)sin(AB)(a2b2)sin(AB)a2sin(AB)sin(AB)b2sin(AB)sin(AB),2a2cos Asin B2b2cos Bsin A,由正弦定理,得sin2Acos Asin Bsin2Bcos Bsin A,sin Asin B(sin Acos Asin Bcos B)0,sin 2Asin 2B,由0<2A<2,0<2B<2,得2A2B或2A2B,即ABC是等腰三角形或直角三角形方法二同方法一可得2a2cos Asin B2b2cos Bsin A,由正、余弦定理,即得a2b×b2a×,a2(b2c2a2)b2(a2c2b2),即(a2b2)(c2a2b2)0,ab或c2a2b2,三角形为等腰三角形或直角三角形变式迁移3(1)证明在ABC中,由正弦定理及已知得.于是sin Bcos Ccos Bsin C0,即sin(BC)0.因为<BC<,从而BC0.所以BC.(2)解由ABC和(1)得A2B,故cos 2Bcos(2B)cos A.又0<2B<,于是sin 2B.从而sin 4B2sin 2Bcos 2B,cos 4Bcos22Bsin22B.所以sinsin 4Bcos cos 4Bsin .课后练习区1.解析根据正弦定理,可得,解得sin B,又因为b<a,则B<A,故B为锐角,所以cos B.2.解析由余弦定理得,cos A,·3×2×.3直角三角形解析sin2,cos Aa2b2c2,符合勾股定理,即ABC为直角三角形445°解析BC>AC,A>B,所以角B是锐角,由正弦定理得,即sin B,所以B45°.5a>b解析因为C120°,ca,所以c2a2b22abcos C,2a2a2b22ab.所以a2b2ab,ab,因为a>0,b>0,所以ab>0,所以a>b.6等边三角形解析b2a2c22accos B,aca2c2ac,(ac)20,ac,又B60°,ABC为等边三角形71解析由AC2B及ABC180°知,B60°.由正弦定理知,即sin A.由a<b知,A<B,A30°,C180°AB180°30°60°90°,sin Csin 90°1.8.解析设BAD,DAC,则tan ,tan ,tanBACtan()1.BAC的大小为.9解(1)因为cos,所以cos A2cos21,sin A.(5分)又由·3得bccos A3,所以bc5,因此SABCbcsin A2.(9分)(2)由(1)知,bc5,又bc6,由余弦定理,得a2b2c22bccos A(bc)2bc20,所以a2.(14分)10解在ADC中,AD10,AC14,DC6,由余弦定理得,cosADC,(6分)ADC120°,ADB60°.(8分)在ABD中,AD10,B45°,ADB60°,由正弦定理得,AB5.(14分)11解(1)3b23c23a24bc,b2c2a2bc.由余弦定理得,cos A,(4分)又0<A<,故sin A.(6分)(2)原式(8分)(11分).所以.(14分)
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 成人自考


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!