高考数学浙江理科一轮【第三章】导数及其应用 第三章 3.6

上传人:仙*** 文档编号:43051905 上传时间:2021-11-29 格式:DOC 页数:16 大小:353.50KB
返回 下载 相关 举报
高考数学浙江理科一轮【第三章】导数及其应用 第三章 3.6_第1页
第1页 / 共16页
高考数学浙江理科一轮【第三章】导数及其应用 第三章 3.6_第2页
第2页 / 共16页
高考数学浙江理科一轮【第三章】导数及其应用 第三章 3.6_第3页
第3页 / 共16页
点击查看更多>>
资源描述
精品资料3.6正弦定理、余弦定理及解三角形1 正弦、余弦定理在ABC中,若角A,B,C所对的边分别是a,b,c,R为ABC外接圆半径,则定理正弦定理余弦定理内容2Ra2b2c22bccos_A;b2c2a22cacos_B;c2a2b22abcos_C变形(1)a2Rsin A,b2Rsin_B,c2Rsin_C;(2)sin A,sin B,sin C;(3)abcsin_Asin_Bsin_C;(4)asin Bbsin A,bsin Ccsin B,asin Ccsin Acos A;cos B;cos C2 SABCabsin Cbcsin Aacsin B(abc)r(r是三角形内切圆的半径),并可由此计算R、r.3 在ABC中,已知a、b和A时,解的情况如下:A为锐角A为钝角或直角图形关系式absin Absin Aab解的个数一解两解一解一解4 实际问题中的常用角(1)仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图)(2)方向角:相对于某正方向的水平角,如南偏东30,北偏西45等(3)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为(如图)(4)坡度:坡面与水平面所成的二面角的正切值1 判断下面结论是否正确(请在括号中打“”或“”)(1)在ABC中,AB必有sin Asin B()(2)若满足条件C60,AB,BCa的ABC有两个,那么a的取值范围是(,2)()(3)若ABC中,acos Bbcos A,则ABC是等腰三角形()(4)在ABC中,tan Aa2,tan Bb2,那么ABC是等腰三角形()(5)从A处望B处的仰角为,从B处望A处的俯角为,则,的关系为180.()2 (2013湖南)在锐角ABC中,角A,B所对的边长分别为a,b,若2asin Bb,则角A等于()A. B. C. D.答案D解析在ABC中,利用正弦定理得2sin Asin Bsin B,sin A.又A为锐角,A.3 (2013陕西)设ABC的内角A,B,C所对的边分别为a,b,c,若bcos Cccos Basin A,则ABC的形状为()A锐角三角形 B直角三角形C钝角三角形 D不确定答案B解析由bcos Cccos Basin A,得sin Bcos Csin Ccos Bsin2A,即sin(BC)sin2A,所以sin A1,由0A,得A,所以ABC为直角三角形4 在ABC中,B60,AC,则AB2BC的最大值为_答案2解析由正弦定理知,AB2sin C,BC2sin A.又AC120,AB2BC2sin C4sin(120C)2(sin C2sin 120cos C2cos 120sin C)2(sin Ccos Csin C)2(2sin Ccos C)2sin(C),其中tan ,是第一象限角,由于0C120,且是第一象限角,因此AB2BC有最大值2.5 一船以每小时15 km的速度向东航行,船在A处看到一个灯塔M在北偏东60方向,行驶4 h后,船到B处,看到这个灯塔在北偏东15方向,这时船与灯塔的距离为_ km.答案30解析如图所示,依题意有AB15460,MAB30,AMB45,在AMB中,由正弦定理得,解得BM30 (km)题型一正、余弦定理的简单应用例1(1)在ABC中,内角A,B,C的对边分别是a,b,c,若a2b2bc,sin C2sin B,则A等于()A30 B60 C120 D150(2)在ABC中,a,b,c分别为内角A,B,C的对边,且2asin A(2bc)sin B(2cb)sin C,则sin Bsin C的最大值为()A0 B1 C. D.思维启迪(1)由sin C2sin B利用正弦定理得b、c的关系,再利用余弦定理求A.(2)要求sin Bsin C的最大值,显然要将角B,C统一成一个角,故需先求角A,而题目给出了边角之间的关系,可对其进行化边处理,然后结合余弦定理求角A.答案(1)A(2)B解析(1)sin C2sin B,由正弦定理得c2b,cos A,又A为三角形的内角,A30.(2)已知2asin A(2bc)sin B(2cb)sin C,根据正弦定理,得2a2(2bc)b(2cb)c,即a2b2c2bc.由余弦定理得a2b2c22bccos A,故cos A,又A为三角形的内角,A120.故sin Bsin Csin Bsin(60B)cos Bsin Bsin(60B),故当B30时,sin Bsin C取得最大值1.思维升华(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到(2)解题中注意三角形内角和定理的应用及角的范围限制(1)在ABC中,内角A,B,C所对的边分别是a,b,c.已知8b5c,C2B,则cos C等于()A. B C D.(2)已知a,b,c分别是ABC的三个内角A,B,C所对的边,若a1,b,AC2B,则角A的大小为_答案(1)A(2)解析(1)由正弦定理,将8b5c及C2B代入得,化简得,则cos B,所以cos Ccos 2B2cos2B12()21,故选A.(2)AC2B且ABC,B.由正弦定理知:sin A,又ab,AB,A.题型二正弦定理、余弦定理的综合应用例2(2012课标全国)已知a,b,c分别为ABC三个内角A,B,C的对边,acos Casin Cbc0.(1)求A;(2)若a2,ABC的面积为,求b,c.思维启迪利用正弦定理将边转化为角,再利用和差公式可求出A;面积公式和余弦定理相结合,可求出b,c.解(1)由acos Casin Cbc0及正弦定理得sin Acos Csin Asin Csin Bsin C0.因为BAC,所以sin Asin Ccos Asin Csin C0.由于sin C0,所以sin.又0A,故A.(2)ABC的面积Sbcsin A,故bc4.而a2b2c22bccos A,故b2c28.解得bc2.思维升华有关三角形面积问题的求解方法:(1)灵活运用正、余弦定理实现边角转化(2)合理运用三角函数公式,如同角三角函数的基本关系、二倍角公式等在ABC中,内角A,B,C所对的边长分别是a,b,c.(1)若c2,C,且ABC的面积为,求a,b的值;(2)若sin Csin(BA)sin 2A,试判断ABC的形状解(1)c2,C,由余弦定理c2a2b22abcos C得a2b2ab4.又ABC的面积为,absin C,ab4.联立方程组解得a2,b2.(2)由sin Csin(BA)sin 2A,得sin(AB)sin(BA)2sin Acos A,即2sin Bcos A2sin Acos A,cos A(sin Asin B)0,cos A0或sin Asin B0,当cos A0时,0A,A,ABC为直角三角形;当sin Asin B0时,得sin Bsin A,由正弦定理得ab,即ABC为等腰三角形ABC为等腰三角形或直角三角形题型三解三角形的实际应用例3某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A处获悉后,立即测出该渔轮在方位角为45,距离为10 n mile的C处,并测得渔轮正沿方位角为105的方向,以9 n mile/h的速度向某小岛靠拢,我海军舰艇立即以21 n mile/h的速度前去营救,求舰艇的航向和靠近渔轮所需的时间思维启迪本题中所涉及的路程在不断变化,但舰艇和渔轮相遇时所用时间相等,先设出所用时间t,找出等量关系,然后解三角形解如图所示,根据题意可知AC10,ACB120,设舰艇靠近渔轮所需的时间为t h,并在B处与渔轮相遇,则AB21t,BC9t,在ABC中,根据余弦定理得AB2AC2BC22ACBCcos 120,所以212t210292t22109t,即360t290t1000,解得t或t(舍去)所以舰艇靠近渔轮所需的时间为 h此时AB14,BC6.在ABC中,根据正弦定理得,所以sinCAB,即CAB21.8或CAB158.2(舍去)即舰艇航行的方位角为4521.866.8.所以舰艇以66.8的方位角航行,需 h才能靠近渔轮思维升华求解测量问题的关键是把测量目标纳入到一个可解三角形中,三角形可解,则至少要知道这个三角形的一条边长解题中注意各个角的含义,根据这些角把需要的三角形的内角表示出来,注意不要把角的含义弄错,不要把这些角与要求解的三角形的内角之间的关系弄错在斜度一定的山坡上的一点A测得山顶上一建筑物顶端对于山坡的斜度为15,如图所示,向山顶前进100 m后,又从B点测得斜度为45,设建筑物的高为50 m求此山对于地平面的斜度的余弦值解在ABC中,BAC15,CBA18045135,AB100 m,所以ACB30.由正弦定理,得,即BC.在BCD中,因为CD50,BC,CBD45,CDB90,由正弦定理,得,解得cos 1.因此,山对地面的斜度的余弦值为1.代数式化简或三角运算不当致误典例:(14分)在ABC中,若(a2b2)sin(AB)(a2b2)sin(AB),试判断ABC的形状易错分析(1)从两个角的正弦值相等直接得到两角相等,忽略两角互补情形;(2)代数运算中两边同除一个可能为0的式子,导致漏解;(3)结论表述不规范规范解答解(a2b2)sin(AB)(a2b2)sin(AB),b2sin(AB)sin(AB)a2sin(AB)sin(AB),2sin Acos Bb22cos Asin Ba2,即a2cos Asin Bb2sin Acos B6分方法一由正弦定理知a2Rsin A,b2Rsin B,sin2Acos Asin Bsin2Bsin Acos B,又sin Asin B0,sin Acos Asin Bcos B,sin 2Asin 2B.10分在ABC中,02A2,02B2,2A2B或2A2B,AB或AB.ABC为等腰或直角三角形14分方法二由正弦定理、余弦定理得:a2bb2a,a2(b2c2a2)b2(a2c2b2),(a2b2)(a2b2c2)0,10分a2b20或a2b2c20.即ab或a2b2c2.ABC为等腰或直角三角形14分温馨提醒(1)判断三角形形状要对所给的边角关系式进行转化,使之变为只含边或只含角的式子然后判断;注意不要轻易两边同除以一个式子(2)在判断三角形形状时一定要注意解是否唯一,并注重挖掘隐含条件另外,在变形过程中要注意角A,B,C的范围对三角函数值的影响.方法与技巧1 应熟练掌握和运用内角和定理:ABC,中互补和互余的情况,结合诱导公式可以减少角的种数2 正、余弦定理的公式应注意灵活运用,如由正、余弦定理结合得sin2Asin2Bsin2C2sin Bsin Ccos A,可以进行化简或证明3 合理利用换元法、代入法解决实际问题失误与防范1 在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解,所以要进行分类讨论2 利用正、余弦定理解三角形时,要注意三角形内角和定理对角的范围的限制A组专项基础训练(时间:40分钟)一、选择题1 在ABC,已知A45,AB,BC2,则C等于()A30 B60 C120 D30或150答案A解析在ABC中,sin C,又ABBC,CA,故C30.2 ABC中,角A、B、C所对的边分别为a、b、c,若cos A,则ABC为()A钝角三角形 B直角三角形C锐角三角形 D等边三角形答案A解析依题意得cos A,sin Csin Bcos A,所以sin(AB)sin Bcos A,即sin Bcos Acos Bsin Asin Bcos A0,所以cos Bsin A0,于是有cos B0,B为钝角,ABC是钝角三角形3 (2012湖南)ABC中,AC,BC2,B60,则BC边上的高等于()A. B.C. D.答案B解析设ABa,则由AC2AB2BC22ABBCcos B知7a242a,即a22a30,a3(负值舍去)BC边上的高为ABsin B3.4 (2013辽宁)在ABC中,内角A,B,C的对边分别为a,b,c.若asin Bcos Ccsin Bcos Ab,且ab,则B等于()A. B. C. D.答案A解析由条件得sin Bcos Csin Bcos A,依正弦定理,得sin Acos Csin Ccos A,sin(AC),从而sin B,又ab,且B(0,),因此B.5 在ABC中,a、b、c分别是角A、B、C的对边,已知b2c(b2c),若a,cos A,则ABC的面积等于()A. B. C. D3答案C解析b2c(b2c),b2bc2c20,即(bc)(b2c)0,b2c.又a,cos A,解得c2,b4.SABCbcsin A42 .二、填空题6 (2013安徽)设ABC的内角A,B,C所对边的长分别为a,b,c.若bc2a,3sin A5sin B,则角C_.答案解析由已知条件和正弦定理得:3a5b,且bc2a,则a,c2abcos C,又0C,因此角C.7 在ABC中,若b5,B,tan A2,则a_.答案2解析由tan A2得sin A2cos A.又sin2Acos2A1得sin A.b5,B,根据正弦定理,有,a2.8 如图,设A,B两点在河的两岸,一测量者在点A的同侧的河岸边选定一点C,测出AC的距离为50 m,ACB45,CAB105,则A,B两点的距离为_答案50 m解析由正弦定理得,所以AB50.三、解答题9 (2013北京)在ABC中,a3,b2,B2A.(1)求cos A的值;(2)求c的值解(1)在ABC中,由正弦定理,cos A.(2)由余弦定理,a2b2c22bccos A32(2)2c222c则c28c150.c5或c3.当c3时,ac,AC.由ABC,知B,与a2c2b2矛盾c3舍去故c的值为5.10(2013江西)在ABC中,角A、B、C所对的边分别为a、b、c,已知cos C(cos Asin A)cos B0.(1)求角B的大小;(2)若ac1,求b的取值范围解(1)由已知得cos(AB)cos Acos Bsin Acos B0,即有sin Asin Bsin Acos B0,因为sin A0,所以sin Bcos B0,即cos Bsin B.因为0B0,所以cos B0,所以tan B,即B.(2)由余弦定理得b2a2c22accos B,因为ac1,cos B,所以b2(ac)23ac(ac)232(ac)2,b.又acb,b1,b1.B组专项能力提升(时间:30分钟)1 ABC的三个内角A,B,C所对的边分别为a,b,c,asin Asin Bbcos2Aa,则等于()A2 B2 C. D.答案D解析asin Asin Bbcos2Aa,sin Asin Asin Bsin Bcos2Asin A,sin Bsin A,.2 有一长为1的斜坡,它的倾斜角为20,现高不变,将倾斜角改为10,则斜坡长为()A1 B2sin 10 C2cos 10 Dcos 20答案C解析如图,ABC20,AB1,ADC10,ABD160.在ABD中,由正弦定理得,ADAB2cos 10.3 (2013浙江)在ABC中,C90,M是BC的中点若sinBAM,则sinBAC_.答案解析因为sinBAM,所以cosBAM.如图,在ABM中,利用正弦定理,得,所以.在RtACM中,有sinCAMsin(BACBAM)由题意知BMCM,所以sin(BACBAM)化简,得2sinBACcosBACcos2BAC1.所以1,解得tanBAC.再结合sin2BACcos2BAC1,BAC为锐角可解得sinBAC.4 (2012江西)在ABC中,角A,B,C的对边分别为a,b,c.已知A,bsincsina.(1)求证:BC;(2)若a,求ABC的面积(1)证明由bsincsina,应用正弦定理,得sin Bsinsin Csinsin A,sin Bsin C,整理得sin Bcos Ccos Bsin C1,即sin(BC)1.由于0B,C,从而BC.(2)解BCA,因此B,C.由a,A,得b2sin ,c2sin ,所以ABC的面积Sbcsin Asin sin cos sin .5 已知ABC的三个内角A,B,C成等差数列,角B所对的边b,且函数f(x)2sin2x2sin xcos x在xA处取得最大值(1)求f(x)的值域及周期;(2)求ABC的面积解(1)因为A,B,C成等差数列,所以2BAC,又ABC,所以B,即AC.因为f(x)2sin2x2sin xcos x(2sin2x1)sin 2xsin 2xcos 2x2sin,所以T.又因为sin1,1,所以f(x)的值域为2,2(2)因为f(x)在xA处取得最大值,所以sin1.因为0A,所以2A,故当2A时,f(x)取到最大值,所以A,所以C.由正弦定理,知c.又因为sin Asin,所以SABCbcsin A.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 工作计划


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!