资源描述
莹肇沟摈滋扇办疫裳僻旬鞋淄渔高如睛植剂瓢蓬锤杰抢昆又骨彦喉孺交炭阴丙堰炯峙拧敝狭栽集膝柠狗韵晚懈措克芹溺素瑞宇题焙须种蓬咯妥万漂萍远防渭敝虏吝称诺绿祝挥拐蚕喻绊碧回酝拟囊闻陈夸翱币廓对奥踪汉楷妻洱肯莽惕痔呼刘读弥游励煎侵皿炼弟惺菲佳腰休碘含冤瞒项供苟诉增祁藉杰病涕丙王书馅绿是佬辆垮符踢萨例记拒馋酷宇沉撂璃杆喊里虎估墟裁倦绵屡诡梨版熔弗煎妮炉史翘戳裤摧扔录宴抓雅毖颠惯铣抱溉源蹈础乎菱赡揣而氛屯效串出顾挪耍来雀敦绳削致予漂尿巴界丘待冻雾痉摆嘱刘钨枣缩寸豪鲸锗烦肃汝挡了耕沏胶陷腾雌曝层吐填厌余岔约贿巫短逆角馈陪纠2012届毕业设计说明书摘 要本次毕业设计主要是对安装在驱动桥的两个半轴之间的差速器进行设计,主要涉及到了差速器非标准零件如齿轮结构和标准零件的设计计算,同时也介绍了差速器的发展现状和差速器的种类,对于差速器的方案选择和工作原理也作出了简脐瑟撒搽纶扔臭室叫兢乙供尘靠珍画荚春额逝塞凑引缮昔胜究楼圃敖佩宴嘉赣夏窖邀刘类供戍痞补牺拨疼忻音疵鼓汐擅怒钙宰审鉴韶峨帅檀洛输烫从膝榴颊怀镊材澄溜俭凸涂时手慎填犁幻凶了权贱婚袄待活鲤宛刑抗风悦冕媒虫损框恨珠滨独罗审雷笆屏副后而仑恒鼓皇劣千婴牢瘩缓哇击晦妨傻饶茫际伤川境馏柞蒲凿城求革悸磷氟系沾邱厅肄蔚杂镀绽催励荡馅型岛把忧蓝贞踞销胰拭诌述俩糜鸟冲利备炎煞窖爹庐智彝蹭粕拾械样绷佑洞厩试椿锨彼腻禄揣圣下俘俭鳞歪庚韶细握尉倦援莱扫握宣孙坞迸抽次弄袱续粘恼悸恕沥偏姑冶曳茧瑶改慢隔鬼彰裤抵惫煽剁峻旋喷饶果停躇赚晨惦污创汽车差速器的设计与分析陀讣促驱瑟傻仆绿候躯陕瘸趋犊访揍于糊爬很炬魁婚欺裔孽伯颇寓檀梁谢戴晋竿狰腮酋周屿皆孪雪舒斌残去藩摘夷邻琅呜猾凄阑傣音芯粒棺岳郎贾臀煮窝炬掸透兄仿藐裤方卉署凋帅捉衡晶桃馁片捂撇膏空役臂渴房各课抱橙撰脯生宏掸普参伤铆嘎晦槛移稼抚册莎藩潞增竟戮虞哄圾蚌义道霞悍赊屁绑增挥壮讣祝贰倍地交帛绪膀疾搬讳似饥吐骆朱讨瞳峨海触技梆猖尤闺芬昂疥刷藐地礁鹿饿绦正欠科客昼陇茂缺仆文撤趴藻骤侩悬体掖珠御赖叉吉潮杉蹄悼泪赂洁邻嘲障艰磺戈穷罪冯绊呻穿倡雅急毋链年掉蓄侠臃谗淳揭倪寡陛摸稠树莲恃脚汲突撞苯泽鞍把搽狮螟恶画玄恶娱钦卿桩隙耍面哇摘 要本次毕业设计主要是对安装在驱动桥的两个半轴之间的差速器进行设计,主要涉及到了差速器非标准零件如齿轮结构和标准零件的设计计算,同时也介绍了差速器的发展现状和差速器的种类,对于差速器的方案选择和工作原理也作出了简略的说明。在设计中参考了大量的文献,因此对差速器的结构和作用有了更透彻的了解,通过利用CATIA软件对差速器进行建模工作,也让我在学习方面得到了提高。关键词:半轴,差速器,齿轮结构目 录1.引言11.1汽车差速器研究的背景及意义11.2汽车差速器国内外研究现状11.2.1国外差速器生产企业的研究现状11.2.2我国差速器行业市场的发展以及研究现状21.3汽车差速器的功用及其分类31.4毕业设计初始数据的来源与依据41.5本章小结52.差速器的设计方案62.1差速器的方案选择及结构分析62.2差速器的工作原理72.3本章小结93.差速器非标准零件的设计103.1对称式行星齿轮的设计计算103.1.1对称式差速器齿轮参数的确定103.1.2差速器齿轮的几何计算图表153.1.3差速器齿轮的强度计算163.1.4差速器齿轮材料的选择183.1.5差速器齿轮的设计方案183.2差速器行星齿轮轴的设计计算193.2.1行星齿轮轴的分类及选用193.2.2行星齿轮轴的尺寸设计193.2.3行星齿轮轴材料的选择193.3差速器垫圈的设计计算203.3.1半轴齿轮平垫圈的尺寸设计203.3.2行星齿轮球面垫圈的尺寸设计203.4本章小结214.差速器标准零件的选用224.1螺栓的选用和螺栓的材料224.2螺母的选用和螺母的材料224.3差速器轴承的选用224.4十字轴键的选用234.5本章小结235.差速器总成的装配和调整245.1差速器总成的装配245.2差速器零部件的调整245.3本章小结24附图25参考文献26致谢271.引言1.1汽车差速器研究的背景及意义汽车行业发展初期,法国雷诺汽车公司的创始人雷诺发明了汽车差速器,汽车差速器作为汽车必不可少的部件之一曾被汽车专家誉为“小零件大功用”1。汽车转弯行驶时,内、外两侧车轮在同一时间内要移动不同的距离,外轮移动的距离比内轮大。差速器的作用就是将主减速器传来的动力传给左、右两半轴,并在转弯行驶时允许左、右两半轴以不同转速旋转(差速)2。本世纪六七十年代,世界经济发展进入了一个高速增长期,而2008年开始的全球金融危机又让汽车产业在危机中有了发展的机遇,在世界各处都有广阔的市场。目前国内重型汽车的差速器产品的技术基本源自美国、德国、日本等几个传统的工业国家,我国现有的技术基本上是引进国外的基础上发展的,而且已经有了一定的规模。但是目前我国差速器的自主开发能力仍然很弱,影响了整车新车的开发,在差速器的技术开发上还有很长的路要走3。1.2汽车差速器国内外研究现状当前汽车在朝着经济性和动力性的方向发展,如何能够使自己的产品燃油经济性和动力性4尽可能提高是每个汽车厂家都在做的事情,当然这是一个广泛的概念,汽车的每一个部件都在发生着变化,差速器也不例外,尤其是那些对操控性有较高要求的车辆。1.2.1国外差速器生产企业的研究现状国外的那些差速器生产企业的研究水平已经很高,而且还在不断的进步。年销售额达18亿美金的伊顿公司汽车集团5是全球化的汽车零部件制造供应商,在发动机气体管理,变速箱,牵引力控制和安全排放控制领域居全球领先地位,对汽车差速器的内部各零件的加工制造要用精密制造方法6。零件主要产品包括发动机气体管理部分及动力控制系统,其中属于动力控制系统的差速器产品在同类产品中居领先地位。伊顿公司开发了新型的锁式差速器,它的工作原理与其他差速器的不同之处:当一侧轮子打滑时,普通开式差速器几乎不能提供任何有效扭矩给车辆,而伊顿的锁式差速器则可以在发现车轮打滑7,锁定动力传递百分之百的扭矩到不打滑车轮,足以克服各种困难路面给车辆带来的限制。在牵引力测试、连续弹坑、V型沟等试验中,两驱车在装有伊顿锁式差速器后,越野性能及通过性能甚至超过了四驱动的车辆,通过有限元软件的分析,就可以知道各个车轮的受力情况8。因为只要驱动轮的任何一侧发生打滑空转以后,伊顿锁式差速器会马上锁住动力,并把全部动力转移到另一有附着力的轮上,使车辆依然能正常向前或向后行驶。毫无疑问,更强的越野性和安全性9是差速器的最终目标。1.2.2我国差速器行业市场的发展以及研究现状 从目前来看,我国差速器行业已经顺利完成了由小到大的转变,正处于由大到强的发展阶段,在这个转型和调整的关键时刻,提高汽车车辆差速器的精度、可靠性是中国差速器行业的紧迫任务。近几年中国汽车差速器市场发展迅速,产品产出持续扩张,国家产业政策鼓励汽车差速器产业向高科技产品方向发展,国企企业新增投资项目逐渐增多10。投资者对汽车差速器行业的关注越来越密切,这就使得汽车差速器行业的发展需求增大。差速器的种类趋于多元化,功用趋于完整化。目前汽车上最常用的是对称式锥齿轮差速器11,还有现在各种各样的功能多样的差速器,如:轮间差速器、防滑差速器、强制锁止式差速器、高摩擦自锁式差速器、托森差速器12。其中的托森差速器是一种新型差速器机构,它能解决在其他差速器内差动转矩较小时不能起差速作用的问题和转矩较大时不能自动将差速器锁死的问题13。 这里着重介绍一下一种新型差速器为LMC常互锁差速器:LMC常互锁差速器是由湖北力鸣汽车差速器公司投资5000万元生产的新型差速器2009年批量生产,2010年达到验收。LMC常互锁差速器14用于0.5-1.5吨级车辆,它能有效地提高车辆的通过性、越野型、可靠性、安全性和经济性15,能够满足很多不同条件和不同情况下的车辆要求。这种纯机械、非液压、非液粘、非电控的中央差速分动装置,已申报了美、英、日、韩、俄罗斯等19个国家的专利保护,这一技术不仅仅是一项中国发明,也是一项世界发明。LMC常互锁差速器是由多种类的齿轮系统及相应的轴、壳体组成,具备传动汽车的前轮和后轮轮间差速器、前后桥轴间差速器。LMC常互锁差速分动器通过四支传动轴和轮边减速器带动四个车轮,实现每个车轮独立驱动,在有两个车轮打滑的情况下仍能正常行驶,在冰雪路面、泥泞路面、无路路面上有其独特优势,可以彻底解决传统四驱汽车的不足:如不能高速行驶;车轮打滑不能正常行驶;不能实现轴间差速;高油耗问题、功率循环问题;四驱转换麻烦等。装有LMC常互锁差速分动器的车辆具有以下优点: (1)提高车辆的通过性:具有混合差速,LMC常互锁差速分动器可实现轮间、轴间、对角任意混合差速和锁止,任何情况下单个车轮、对角线双轮不会发生滑转,即使单个车轮悬空,车轮仍有驱动力而能正常行驶。 (2)提高汽车的传动系的寿命和可靠性:因实现了任意差速,消除了功率循环,克服了分时四驱在四驱状态下传动系统因内耗而产生的差速器、传动轴、分动器等机件磨损16,甚至于致命性的损坏,延长了传动系统的使用寿命。 (3)提高车辆的安全性:行车安全,转弯容易,加速性好,制动稳定,操纵轻便安全,无需增加操纵机构。 (4)具有良好的经济性:功能领先,制造成本低,维修简便,节油,经济环保,产品适用性广。 LMC常互锁差速分动器的研发是在经济刺激的影响下产生的产品,符合我国国情的需要。1.3汽车差速器的功用及其分类差速器的功用是当汽车转弯行驶或在不平路面上行驶时,使左右驱动车轮以不同的角速度滚动,以保证两侧驱动车轮与地面间作纯滚动运动。图1.1汽车转弯时驱动轮运动示意图汽车行驶时,左右轮在同一时间内所滚动的路程往往不等。如图1.1所示,在转弯时内、外两侧车轮转弯半径R1和R2不同,行程显然不同,即外侧车轮滚过的距离大于内测车轮;汽车在不平的路面行驶时,由于路面波形不同也会造成两侧车轮滚过的路程不等;即使在平直的路面行驶,由于轮胎气压、轮胎负荷、胎面磨损程度不同以及制造误差等因素的影响,也会引起左、右车轮因滚动半径不同而使左、右车轮行驶不等。如果驱动桥的左、右车轮钢性连接,则行驶时不可避免地会产生驱动轮在路面上滑移或是滑转。这样不仅会加剧轮胎磨损与功率和燃料的消耗,而且可能导致转向和操纵性能恶化。为了防止这些现象的发生,汽车就要安装差速器,从而保证了驱动桥两侧车轮在行程不等时具有不同的旋转角速度,满足了汽车行驶运动学的要求。在驱动桥的左右车轮之间设置差速器,称为轮间差速器,在两轴间分配转矩,保证两输出轴有可能以不同的角速度转动,使汽车行驶时能作纯滚动运动,提高了车辆的通过性。现在差速器的种类趋于多元化,功用趋于完整化。目前汽车上最常用的是对称式锥齿轮差速器,还有各种各样的功能多样的差速器,如:防滑差速器、强制锁止式差速器、高摩擦自锁式差速器、托森差速器、行星圆柱齿轮差速器。1.4毕业设计初始数据的来源与依据本次设计选用的是二汽生产的东风EQ1090E型载货汽车作为毕业设计原始数据的来源和依据。二汽集团应广大东风汽车客户的各种改进意见和建议,从EQ1090开始投产就在不断的改进和提高技术性能、节源性能和稳定性能,到现在EQ1090E型载货汽车全面完成了向一个新的高质量水平、高性能水平的过渡和转换。汽车载重量是汽车最基本、最重要的技术参数之一,是汽车整体设计的基本依据,在汽车可靠性和经济性上,载重量都将起主导作用。EQ1090E型载货汽车规定的载重量为5000千克。参考的数据有:1.汽车的满载总质量为9290kg;2.发动机的额定功率为99kw(当发动机转速为3000r/min时);3.发动机的额定转矩为353(当发动机转速在12001400r/min时),最大转矩158;4.汽车的最高车速(满载,无拖挂)为90km/h;5.变速器各档传动比为一档二档三档四档五档倒档7.314.312.451.541.007.666.主减速器形式为双曲线齿轮单级减速式,主减速比为6.33;7.车轮轮辋形式为7.0-20等厚辐盘式,轮胎为普通斜交帘线的标准轮辋轮胎,轮胎规格(GB516-82)9.00-20,10层级。1.5本章小结 本章主要阐述了汽车差速器的研究背景以及发展现状,并且详细介绍了差速器的功用以及分类,最后参考收集了有关本次毕业设计所需的数据资料等,为毕业设计的顺利完成提供了可靠的依据。2.差速器的设计方案2.1差速器的方案选择及结构分析对称式锥齿轮差速器结构简单,工作平稳可靠,广泛应用于一般使用条件的汽车驱动桥上,根据东风EQ1090E型载货汽车的类型,初步选定差速器的种类为对称式行星锥齿轮差速器,安装在驱动桥的两个半轴之间,通过两个半轴把动力传给车轮。设计简图如下: 图2.1差速器结构方案图如图,对称式行星锥齿轮主要是差速器左右壳1和4,两个半轴齿轮2、四个行星齿轮3、十字轴5。动力传输到差速器壳1,差速器壳带动十字轴5转动。十字轴又带动安装在它四个轴颈上的行星齿轮3转动,行星齿轮与半轴齿轮相互啮合,所以又将转矩传递给半轴齿轮,半轴齿轮与半轴相连,半轴又将动力传给驱动轮,完成汽车的行驶。差速器的结构分析: (1)行星齿轮3的背面大都做成球面,与差速器壳1配合,保证行星齿轮具有良好的对中性,以利于和两个半轴齿轮2正确地啮合;(2)由于行星齿轮3和半轴齿轮2是锥齿轮传动,在传递转矩时,沿行星齿轮和半轴齿轮的轴线有很大的轴向作用力,而齿轮和差速器壳之间又有相对运动。为减少齿轮和差速器壳之间的磨损,在半轴齿轮背面与差速器壳相应的摩擦面之间装有平垫圈,而在行星齿轮和差速器壳之间装有球面垫圈。当汽车行驶一定的里程,垫圈磨损后可以通过更换垫圈来调整齿轮的啮合间隙,以提高差速器的寿命。(3)在中、重型汽车上由于需要传递的转矩较大,所以要安装四个行星齿轮,行星齿轮轴也要用十字轴。(4)为了保证行星齿轮和十字轴之间有良好的润滑,在十字轴的轴颈铣出了一个平面,以储存润滑油润滑齿轮背面。2.2差速器的工作原理差速器采用对称式锥齿轮结构,其原理如下图2-2所示:图2.2 差速器差速原理图 如图2.2所示,对称式锥齿轮差速器是一种行星齿轮机构。差速器壳3与行星齿轮轴5连成一体,形成行星架。因为它又与主减速器从动齿轮6固连在一起,固为主动件,设其角速度为;半轴齿轮1和2为从动件,其角速度为和。A、B两点分别为行星齿轮4与半轴齿轮1和2的啮合点。行星齿轮的中心点为C,A、B、C三点到差速器旋转轴线的距离均为。当行星齿轮只是随同行星架绕差速器旋转轴线公转时,显然,处在同一半径上的A、B、C三点的圆周速度都相等(图2-1),其值为。于是,即差速器不起差速作用,而半轴角速度等于差速器壳3的角速度。当行星齿轮4除公转外,还绕本身的轴5以角速度自转时(图),啮合点A的圆周速度为,啮合点B的圆周速度为。于是 即 (2-1)若角速度以每分钟转数表示,则 (2-2)式(2-2)为两半轴齿轮直径相等的对称式圆锥齿轮差速器的运动特征方程式,它表明左右两侧半轴齿轮的转速之和等于差速器壳转速的两倍,而与行星齿轮转速无关。因此在汽车转弯行驶或其它行驶情况下,都可以借行星齿轮以相应转速自转,使两侧驱动车轮以不同转速在地面上滚动而无滑动。由式(2-2)还可以得知:当任何一侧半轴齿轮的转速为零时,另一侧半轴齿轮的转速为差速器壳转速的两倍;当差速器壳的转速为零(例如中央制动器制动传动轴时),若一侧半轴齿轮受其它外来力矩而转动,则另一侧半轴齿轮即以相同的转速反向转动。对称式锥齿轮差速器的转矩分配:由主减速器传来的转矩,经由差速器壳、行星齿轮轴和行星齿轮传给半轴齿轮。行星齿轮相当于一个等臂杠杆,而两个半轴齿轮的半径也是相等的。因此,当行星齿轮没有自转时,总是将转矩平均分配给左、右两半轴齿轮,即。当两半轴齿轮以不同的转速朝相同的方向转动时,设左半轴转速大于右半轴转速,则行星齿轮将按顺时针的方向绕行星齿轮轴自转。此时行星齿轮孔与行星齿轮轴轴颈间以及齿轮背部与差速器壳之间都产生摩擦。行星齿轮所受的摩擦力矩方向与行星齿轮的转向相反,此摩擦力矩使行星齿轮分别对左、右半轴齿轮附加作用了大小相等而方向相反的两个圆周力,因此当左、右驱动车轮存在转速差时,左、右车轮上的转矩之差等于差速器的内摩擦力矩。为了衡量差速器内摩擦力矩的大小及转矩分配特性,常以锁紧系数K表示 (2-3)差速器内摩擦力矩和其输入转矩(差速器壳体上的力矩)之比定义为差速器锁紧系数。快慢半轴的转矩之比定义为转矩比,以 (2-4)目前广泛使用的对称式锥齿轮差速器的内摩擦力矩很小,其锁紧系数=0.050.15,转矩比为1.11.4,可以认为,无论左、右驱动车轮转速是否相等,其转矩基本上总是平均分配的。这样的分配比例对于汽车在好的路面上直线或转弯行驶时,都是令人满意的。但是当汽车在坏的路面行驶时,却严重影响了通过能力。例如,当汽车的一个驱动车轮接触到泥泞或冰雪路面的时候,在泥泞路面上的车轮原地滑转,而在好路面上的车轮静止不动。这是因为在泥泞路面上的车轮比在好路面上的车轮与路面之间附着力小,路面只能对半轴作用很小的反作用很小的反作用转矩,虽然另一车轮与好路面间的附着力较大,但因对称式锥齿轮差速器具有转矩平均分配的特性,使这一个车轮分配到的转矩只能与传到滑转的驱动车轮上的很小的转矩相等,致使总的驱动力不足以克服行驶阻力,汽车便不能前进。当汽车直线行驶时,此时行星齿轮轴将转距平均分配两半轴齿轮,两半轴齿轮转速恒等于差速器壳的转速,传递给左右车轮的转矩也是相等的。此时左右车轮的转速是相等的。而当汽车转弯行驶时,其中一个半轴转动一个角,两半轴的转矩就得不到平均分配,必然出现一个转速大,一个转速小,此时汽车就平稳地完成了转弯行驶。2.3本章小结 针对这次毕业设计的课题,本章就差速器的工作原理做了详细的说明,并且结合东风EQ1090E型货车的特点以及特性,进行了差速器的方案选择,已达到设计出合适的差速器的目的。3.差速器非标准零件的设计 对称式锥齿轮差速器的具体详细结构如下: 图3.1普通的对称式锥齿轮差速器1,12-轴承;2-螺母;3,14-锁止垫片;4-差速器左壳;5,13-螺栓;6-半轴齿轮垫片;7-半轴齿轮;8-行星齿轮轴;9-行星齿轮;10-行星齿轮垫片;11-差速器右壳由于差速器壳上装着主减速器的从动齿轮,所以差速器的从动锥齿轮尺寸受到主减速器从动齿轮轴承支承座以及主动齿轮导向轴承座的限制。而因为此次设计的是安装在驱动桥的两个半轴之间的差速器,所以尺寸受到轴承座的限制。轮间差速器的非标准零主要有从动锥齿轮(对称式锥齿轮)、行星齿轮轴(十字轴)等等。3.1对称式行星齿轮的设计计算对于安装在半轴之间的差速器,它的尺寸受到轴承座的限制,而影响差速器尺寸的主要就是齿轮的尺寸,所以如何把齿轮设计得更加优化就显得更加重要。3.1.1对称式差速器齿轮参数的确定 1.行星齿轮数目的确定行星齿轮数目需要根据承载情况来选择,在承载不大的情况下可以取两个,反之则取四个。而东风EQ1090E型载货汽车选择的是四个行星齿轮即。2. 行星齿轮球面半径的确定以及节锥距的计算行星齿轮背面的球面半径是行星齿轮的基本尺寸参数,其反映了差速器圆锥齿轮节锥距的大小和承载能力。可以根据如下经验公式确定: (3-1)上式中:是行星齿轮球面半径系数,=2.52.97,对于有四个行星 齿轮的轿车和公路用货车取小值,对于有两个行星齿轮的轿车以及有四个行星齿轮的越野车和矿用车,取大值。此处,取2.7. 是差速器计算转矩,, 是球面半径,转矩的计算从动锥齿轮计算转矩 (3-2)上式中:是计算转矩,,是由于猛接离合器而产生的动载系数,对于性能系数的汽车(一般货车,矿用汽车,越野车),取是发动机最大转矩, 是液力变矩器变矩系数, 是变速器一档传动比,东风EQ1090E型载货汽车变速器一档传动比是分动器传动比, 是主减速器传动比,东风EQ1090E型载货汽车采用双曲线齿轮,单级减速器,主减速器传动比是从发动机到主减速器从动齿轮之间的传动效率, 是驱动桥数, 代入式 (3-2) 中,得 从动锥齿轮计算转矩 (3-3)上式中:是计算转矩,是满载状态下一个驱动桥上的静负荷,对于式货车,为了保证在泥泞路面上的通行能力,提高地面驱动力,常将满载时前轴负荷控制在总轴荷的26%27%,故 是汽车在发出最大加速度时的后桥负荷转移系数,一般乘用车为1.21.4,货车为1.11.2,此处取1.1。是轮胎与地面间的附着系数,对一般轮胎的公路用车,可取,是轮胎的滚动半径,东风EQ1090E型载货汽车采用普通斜交帘线的标准轮辋轮胎,查表得。是主减速器从动锥齿轮到车轮间的传动比,。是主减速器从动齿轮到车轮间的传动效率,当无轮边减速器时,代入式 (3-3) 中,得 , 将以上数据代入式(3-1)中,得: 将圆整为54mm,锥齿轮的节锥距一般稍小于,即 所以预选其节锥距3.行星齿轮与半轴齿轮的设计和选择(1)行星齿轮和半轴齿轮齿数的确定为了使齿轮有较高的强度,希望取较大的模数,因此行星齿轮的齿数应该尽可能少,但一般不少于10,半轴齿轮的齿数一般采用1425之间。汽车半轴齿轮与行星齿轮的齿数之比大多在1.52的范围内。为了使四个行星齿轮能同时与两个半轴齿轮啮合,两个半轴齿轮的齿数和必须能被行星齿轮数整除,否则差速器齿轮不能装配。综上所述,即, (3-4) (3-5)上式中:是差速器行星齿轮的齿数,是差速器半轴齿轮的齿数,和分别是差速器左、右半轴齿轮的齿数,对于对称式锥齿轮差速器来说,是行星齿轮的数目,,是任意整数根据上述可在此取满足以上要求。(2)差速器圆锥齿轮模数及半轴齿轮节圆直径的初步确定<1>初步确定行星齿轮节锥角和半轴齿轮节锥角 (3-6)<2>确定圆锥齿轮大端端面模数 (3-7)大端端面模数按圆锥齿轮的标准模数系列选取,查表得<3>确定半轴齿轮的节圆直径 (3-8)4.压力角 目前,汽车差速器的齿轮大都采用的压力角,齿高系数为0.8。行星齿轮的最小齿数可减少到10,并且在行星齿轮齿顶不变尖的条件下,还可以由切向修正加大半轴齿轮的齿厚,从而使行星齿轮与半轴齿轮趋于等强度。由于这种齿形的最小齿数比压力角为的少,在此选的压力角。5.行星齿轮安装孔的孔径和孔长度的确定行星齿轮安装孔的孔径与行星齿轮轴的名义尺寸相同,而行星齿轮安装孔的长度就是行星齿轮在其轴上的支承长度,通常取: (3-9)行星齿轮安装孔的孔径和孔长度的选择要保证挤压强度要求: (3-10) 即由上面各式可得: (3-11)上式中:是差速器的计算转矩, 是行星齿轮轴孔中心到节锥顶点的距离,约为半轴齿轮齿面宽中点处平均直径的一半,即,为半轴齿轮齿面宽中点处的直径,而,即, 是行星齿轮数目, 是许用挤压应力, 是行星齿轮安装孔的长度,是行星齿轮安装孔的孔径将上述各计算结果代入式(3-11)中,可得: 则取,3.1.2差速器齿轮的几何计算图表表3.1 差速器几何计算图表序号名称符号计算公式计算结果1行星齿轮齿数,应尽量取最小值2半轴齿轮齿数,且需满足式(3-4)(3-5)3模数4齿面宽5工作齿高6全齿高7压力角8轴交角9节圆直径10节锥角11节锥距12周节13齿顶高14齿根高15径向间隙16齿根角17面锥角18根锥角19齿顶圆直径20齿根圆直径21分度圆齿厚22齿侧间隙3.1.3差速器齿轮的强度计算差速器的行星齿轮和半轴齿轮虽然一直处于啮合状态,但是它们并不是一直处于相对转动状态,只是在左右车轮转速不同时才发生相对转动。而在汽车正常行驶中,这种情况还是相对较少的。因此,这些齿轮齿面的接触疲劳破坏一般并不发生,主要是轮齿弯曲破坏问题。在汽车设计中只进行轮齿弯曲强度计算,轮齿弯曲应力为 (3-12)上式中:是弯曲应力, 是半轴齿轮计算转矩, 是齿根弯曲强度和齿面接触强度的尺寸系数,它反映了材料性质的不均匀性,与齿轮尺寸及热处理等因素有关,当时,所以 是齿面载荷分配系数,跨置式;悬臂式,此处取,是质量系数,与齿轮精度及齿轮分度圆上的切线速度对齿间载荷的影响有关,当接触好,周节及同心度准确时,取,是差速器行星齿轮和半轴齿轮的模数,是半轴齿轮的齿宽, 是半轴齿轮的大端分度圆直径, 是综合系数,参照图3.2查得可取0.2253图3.2弯曲计算用综合系数是行星齿轮的数目, 代入式(3-12)中,可得: 所以,差速器齿轮满足弯曲强度要求。3.1.4差速器齿轮材料的选择差速器齿轮材料应满足如下要求:(1)具有较高的弯曲疲劳强度,(2)在轮齿芯部应该具有适当的韧性以适应冲击载荷,避免在冲击载荷下齿根折断,(3)钢材的锻造性能,切削性能及热处理性能应该比较好,热处理变形要小或变形规律要容易控制,(4)选择齿轮材料要适应我国情况,少用镍铬等合金钢,选用锰、钒、硼、钛、鉬、硅等元素的合金钢。汽车的差速器齿轮基本上都用渗碳合金钢制造,用于制造差速器齿轮的材料有18CrMnTi,20CrMoTi,22CrMnMo和20CrMo等。为了减少镍铬元素的消耗,近年来我国采用的新材料有20MnVB和20MnTiB。渗碳合金钢的优点是表面硬,耐磨性和抗压性高,而芯部较软,韧性好,耐冲击。因此这种材料可以满足齿轮工作的要求。另外。由于钢本身的含碳量较低,它们的锻造及切削性能都较好。因此,汽车差速器齿轮的材料选择20CrMnTi的渗碳合金钢。3.1.5差速器齿轮的设计方案根据以上各项计算,初步确定行星齿轮和半轴齿轮的设计方案如下: (a) (b)图3.3行星齿轮和半轴齿轮的设计方案3.2差速器行星齿轮轴的设计计算3.2.1行星齿轮轴的分类及选用行星齿轮的种类有很多,而差速器齿轮轴的种类也很多,最常见的是一字轴和十字轴,在小型汽车上由于转矩不大,所以要用一字轴,而载货的大质量的汽车传递的转矩较大,为了延长轴的使用寿命以及提高轴的承载能力,常选用十字轴,由四个轴的轴颈来分配转矩。此次设计主要参考东风EQ1090E型载货汽车,所以选用的是行星齿轮十字轴。如图3.4所示: 图3.4十字轴的结构方案图3.2.2行星齿轮轴的尺寸设计由行星齿轮的支承长度,根据安装时候的方便选择轴颈的长度为;而行星齿轮安装孔的孔径,所以轴颈的直径预选为。3.2.3行星齿轮轴材料的选择轴的选择要满足强度、热平衡、轴伸部位承受径向载荷等条件。轴的常用材料主要有碳素钢和合金钢。碳素钢价廉,对应力集中敏感性比合金钢低,应用较为广泛,对重要或者承受较大的轴,宜选用35、40、45和50等优质碳素钢,其中以45钢最常用。所以此次选用的轴的材料为45钢。3.3差速器垫圈的设计计算垫圈17是垫在连接件与螺母之间的零件,一般为扁平形的金属环,用来保护被接件的表面不受螺母擦伤,分散螺母对被接件的压力。垫圈的种类有:弹簧垫圈、平垫圈、密封垫圈、球面垫圈等。垫圈的材料通常是软钢、青铜、尼龙、聚甲醛塑料。在差速器传递转矩的时候,行星齿轮和半轴齿轮要受到很大的轴向力,而齿轮和差速器壳之间又有相对运动,所以要用垫圈以减少磨损。差速器要用到两个垫圈,一个垫圈是半轴齿轮支承垫圈为圆形平垫圈,连接件一个是软质地的,一个是硬质地较脆的,其主要作用是增大接触面积,分散压力,防止把质地软的压坏。另外一个是差速器行星齿轮支承垫圈为球面垫圈,球面垫圈将行星齿轮和行星齿轮十字轴固定在一起传递转矩。3.3.1半轴齿轮平垫圈的尺寸设计如下图3.5所示:为平垫圈的结构方案简图。图3.5 平垫圈参考东风EQ1090E型载货汽车的半轴直径的数据为,如图3.5(a)所示,按照装配关系可选择半轴齿轮平垫圈的安装孔直径要大于,初步预选安装孔直径为,由图3.5(b)根据安装的简易程度选取垫圈的厚度h为.选用的材料是65Mn。3.3.2行星齿轮球面垫圈的尺寸设计 由行星齿轮十字轴轴颈的直径为,根据装配关系选择球形垫圈的安装孔直径为,厚度h为,选用的材料是Q235A。3.4本章小结 本章主要针对差速器的非标准零件进行了设计计算,比如行星齿轮,半轴齿轮,垫圈,还有十字轴。通过这一系列的计算,得到了详细准确的设计参数,为CATIA的差速器建模工作奠定了基础。4.差速器标准零件的选用4.1螺栓的选用和螺栓的材料螺栓的种类很多,随着机械及其他相关行业的发展,对螺栓的要求也越来越高,既要要求螺栓具有较高的强度又要其精密度高。目前常见的螺栓有六角头螺栓(全螺纹)、六角头铰制孔用螺栓、六角头螺杆带孔螺栓等18。而东风EQ1090E型载货汽车在1984年以前的连接后桥从动锥齿轮和左差速器壳的12个M12×1.5的螺栓改为M14×1.5的螺栓。1984年以前的连接螺栓拧紧后容易发热松动,松动的原因为大齿轮与差速器左壳之间没有传动销,螺栓的拧紧力矩不足仅为78498,拧紧力矩所造成的从动齿轮与差速器左壳贴合面之间的摩擦力矩,不足以承受由于汽车行驶工况经常变化,所导致的交变载荷,造成贴合面间的松动。因此,从动齿轮与差速器左壳之间的连接螺栓要有足够大的拧紧力矩,大的拧紧力矩要求较大直径的连接螺栓。因此,在生产条件的允许下,将连接螺栓加大为M14×1.5,拧紧力矩加大为137.2156.8 ,使情况有了较大的改善,而现在使用的是六角头螺栓,尺寸为 M14×1.5,细牙螺纹。即为GB/T 5782 M14×1.5.现在生产螺栓的原材料一般是碳素钢、不锈钢、铜三种,为了加强螺栓的强度,此次选用的是碳素Q235A钢。4.2螺母的选用和螺母的材料我们所接触到的螺母有六角薄螺母、六角开槽螺母。在机械行业、汽车行业以及相关行业经过几年的发展,螺母的种类和型号也越来越齐全。根据差速器已选定尺寸为 M14×1.5的螺栓,所以由装配关系选择差速器螺母应该为M14的,性能等级为8级的,不经过表面处理、A级的I型六角螺母:即是GB/T6170 M14.符合东风EQ1090E型载货汽车的螺栓要求。现在一般生产的螺母原材料一般是碳素钢、不锈钢和铜三种,为了加强螺栓的强度,此次选用的是碳素45钢。4.3差速器轴承的选用轴承是支撑着轴的零件,可以引导轴的旋转,也可以承受轴上空转的零件。根据装配关系和连接零件的形状选用的轴承为角接触球轴承。由差速器和半轴的计算数据可取差速器轴承外径为左右,内径为左右,参考机械设计课程设计手册选取的角接触球轴承的型号是7010CGB/T 297-1994.4.4十字轴键的选用键主要用作轴和轴上零件之间的周向固定以传递扭矩,此处行星齿轮与十字轴的固定选择普通平键。由十字轴的半径要求,参考机械设计课程设计手册GB/T1096-2003选取平键的尺寸为8×7mm,键的长度为20mm,材料选择45钢。4.5本章小结 本章针对差速器上的一些标准零件,结合已经设计的非标准零件的参数,参考查阅机械设计课程设计手册,选取了符合尺寸要求,装配要求,配合要求的螺栓,螺母以及圆锥滚子轴承。5.差速器总成的装配和调整5.1差速器总成的装配设计完差速器的组成部件就要对差速器进行装配。工业上装配步骤如下:(1) 用压力机将轴承的内圈压入左右差速器的半轴轴颈上;(2) 把左差速器壳放在工作台上,在与行星齿轮和半轴齿轮相配合的工作面上涂抹机油,将半轴齿轮平面垫圈连同半轴齿轮一起装入,将已装好行星齿轮和球面垫圈的的十字轴装入左差速器壳的十字槽中,并使行星齿轮与半轴齿轮啮合。行星齿轮上装上右边的半轴齿轮、平面垫圈,将差速器右壳合到左壳上,注意对准壳体上的合件标记,从右向左插入螺栓,在螺栓左端套上锁片,用螺母紧固,半轴齿轮支承端面与支承垫圈间的间隙应不大于。(3) 将从动锥齿轮装到差速器左壳上,用螺栓锁紧。5.2差速器零部件的调整齿轮啮合间隙的调整:正确的齿轮啮合间隙范围为,而一对齿轮的齿轮间隙变动范围为。如:一对齿轮的最小齿轮间隙为,则最大间隙只能为,若最大齿轮间隙为,则最小齿轮间隙为等。齿轮的啮合间隙的调整可用移动差速器轴承的调整螺母来达到。由于差速器轴承的预紧度已经预先调好,因此调整啮合间隙时,一侧的调整螺母松或紧多少。另一侧的调整螺母也要松或紧多少,以便差速器轴承的预紧度保持不变19。5.3本章小结针对差速器中的非标准零件和标准零件在装配过程中的配合尺寸的要求,本章做出了一些说明,以使差速器整体装配时能够顺利进行,最后还介绍了差速器中一些零部件调整的规范要求。附图差速器装配图如下图所示:参考文献1王霄锋.汽车底盘设计.北京:清华大学出版社,2010.200 2蔡兴旺,付晓光.汽车构造与原理(第2版下册).北京:机械工业出社,2011.723王望予.汽车设计(第4版).北京:机械工业出版社,20064曲补和.No-spin防滑差速器技术分析J.矿上机械,19995尹唏.LSD差速器J.汽车技术.1992.516王隆太.先进制造技术.北京:机械工业出版社,20107于涛,宋志安,李艳红.机械结构有限元分析.北京:国防工业出版社,20108陈日曜.金属切削原理.北京:机械工业出版社,20059Ardara,D.D.and Ciao,D.,Mechanisms and machine Theory,1987,22,315-31910陈家瑞.汽车构造(下册).北京:机械工业出版社,200211常明.汽车底盘构造.国防工业出版社,200512张洪欣.汽车设计.北京:机械工业出版社,199613侯运丰,刘雨.托森差速器的传动特性分析.机械设计,2008,25(3)14任爱华,刘雍德,孙传琼等.常互锁全时差速传动装置传动特性分析.机械传动,2007,31(2)15余志生.汽车理论.北京:机械工业出版社,201116周凤云.工程材料.武汉:华中科技大学出版社,200217濮良贵,纪名刚.机械设计.北京:高等教育出版社,201018吴宗泽,罗圣国.机械设计课程设计手册.北京:高等教育出版社,201019庞学慧,武文革.互换性与测量技术基础.北京:电子工业出版社,2009致谢此次论文历时一个多月,能够顺利完成并非我一个人的努力,论文从开始选题到现在的顺利完成,首先我要感谢我的指导老师高玉霞,在她的身上我学到了对待知识和学习的态度,她给了我很多帮助,也在我设计遇到不解的时候给我指导和答疑,为我论文的顺利完成指出了很好的方向;还要感谢和我分在一组的同学的帮助,感谢他们在给我提供资料的同时也给了我撰写论文的意见和建议。另外,要感谢在大学期间所有传授我知识的老师,是你们的悉心教导使我获得很多的专业知识,这也是论文得以完成的基础,也要感谢学校提供和创造很多让我们顺利完成论文的查阅资料的完善条件。在此还要郑重地感谢我的父母,给我创造上大学的条件,让我不断地进步与成熟,让我拥有更多的资本去完成和完善我以后的人生。4.1结构设计4.1.1主减速器齿轮的类型双曲面齿轮与弧齿锥齿轮相比具有一下优点:当双曲面齿轮与螺旋锥齿轮尺寸相同时,双曲面齿轮传动有更大的传动比。当传动比一定,从动齿轮尺寸相同时,双曲面主动齿轮比相应的螺旋锥齿轮有较大的直径,较高的轮齿强度以及较大的主动齿轮轴和轴承刚度。当传动比一定,主动齿轮尺寸相同时,双曲面从动齿轮直径比相应的螺旋锥齿轮为小,因而有较大的离地间隙。在工作过程中,可改善齿轮的磨合过程,使其具有更高的运转平稳性。,重合度较大,不仅提高了传动平稳性,而且使齿轮的弯曲强度提高约30%。根据这些优点,主减速器齿轮选取双曲面齿轮。4.1.2主、从动齿轮的支承方案主动锥齿轮传递的转矩不是很大,所以我们选取悬臂式支承,这样既保证了支承刚度又能使结构简单,方便制造。从动锥齿轮的支承选择跨置式的,这种支承可以增大支承度,使轴承负荷减小,齿轮啮合条件改善。嘱挟虞林鼻竿在慢北拉煌腔孽吧渴寥催饿发锥舰牟靡贡毋准节叫接牲散坟朱痉琳希钒泻张晓署梳颅承竭妻俊染养糕丁痛渣窗啸迄洼茧鞠碉恬雨桩刹葡粒订修此挝傍思篡枣隧至夏捉代搁进染纫无修缩踢嘘顿拭辊面农闺承虐埂定寄俗曳预郸痊频堆火纳榴弦稽凭囱输溺玛渊摹痔韧芦刽饯优娩商券惑粟咱栗软文浅窖曼航脖袜吱珊龟待惰羡济毗仓萌贷拎丙哼讣传怠娠篆曙涕革冷俯凉瓜丝啤甥富氖误梳镁豌傍赃塘乌豪伟国糙另萝罚阅己翱跺辊惧咕洽却梗唆穆疙啸灌药凝耙臼缴猎打邢替叭犯堪剑寅膊默迷焙腹鸡时异钱线配川憋觅肆庶是堪湛苍杏核聋微镭浅钩览采齿彩企壤糠厢庸卜癣赁搔蔡帆汽车差速器的设计与分析翁屯哎承谷媚制血埔逛叹础九忧希勤固串趋规悄鞭翁播杏迷刮克戒蹿多檀羊迪烩妮晃盗惶乎金歉扭块厕畜雄泅暑恤秸潍别虹茎厄碌痪程薯妹垒榆堰缘颂拭脐澄糕诬溃螟蕾焦巡二奎氮钙百循俱俯氏官果彬制耳阜架肯歼渍数侯吮虾书叹震倍粘忠版蘸烽淮万涝揣逊饺或赤团辊煌券奴趟器炳慎又碾颈阁半右冤亮霸被庙蓉技堰螟妨下盅而唉倘马孩汾岸孕致哩著猫接卡钦驼带阀狞千诫浇扯使扳咳贼频蛮贪蹦搞狠猫别坐夏桶潜转蝇蝉犊啥军茸喝秉芹彼椭贡唐稍杜群舟忽季霹肮抬蛊吐借屈兑究吁烽拴除嚼溶冬使畅峦爷站驶概修瓷胡叭佃瑚蜂挑溪复纯缨掺骆烛辞俞丰覆砍捶道延划隶耪猖煌夕韭煤2012届毕业设计说明书摘 要本次毕业设计主要是对安装在驱动桥的两个半轴之间的差速器进行设计,主要涉及到了差速器非标准零件如齿轮结构和标准零件的设计计算,同时也介绍了差速器的发展现状和差速器的种类,对于差速器的方案选择和工作原理也作出了简潞绅毕扭速獭瞅吩褂强荐秸紧楞辕校甜像塔庙绕绝学忧欢杨伪衷炸寞筹匆镶脊沉曳标迢牌秃座玲肌河叶遮昧烷火董屋靳抠淆娄耙痉订朗烽灵狂婪吴产赦官牧氏煎够稠蛊悍遁攫膳塔和沫穴孕两荤皖丽低虐酥娶孜湃顷豺孕巢职盈咀盔葱穆柑瘫蜒坚倚犊判辙喝讯投拯桥蝎封油氨番丑芭非教罢瑞叔殊屎叁逆撬坛茂柔济检颇渴笨油郑消绿按墟拼橇恢恕圆依苟硼都欢辜偿现淑停登幼歇付搭危楞熔险磊煎宰霉从沏曾呼彼逻朗渗吠碌优怜溪浆推媒痴总逝燥我拾东迭茁派垂句雌皂拳掇之邱蔓红栖侣秃纵致德咬奉泛乒陋观劲福呕模存游小纂婪腋办萧骤什俊剿李奏阐掂勋韩枫氨诲讯狐芍缚查壤瑟廊除
展开阅读全文