资源描述
湖南大学毕业设计(论文) 第 38 页1 引言装配图联系1538937061.1 毕业设计的背景及目的 制造业是一个国家或地区经济发展的重要支柱,其发展水平标志着该国或地区经济的实力,科技水平,生活水准和国防实力。国际市场的竞争归根到底是各国制造生产能力及机械制造装备的竞争。随着机械制造生产模式的演变,对机械制造装备提出了不同的要求.在50年代“刚性”生产模式下,通过提高效率,自动化程度,进行单一或少品种的大批量生产,以“规模经济”实现降低成本和提高质量的目的。在70年代主要通过改善生产过程管理来进一步提高产品质量和降低成本。在80年代,较多地采用数控机床,机器人,柔性制造单元和系统等高技术的集成来满足产品个性化和多样化的要求,以满足社会各消费群体的不同要求。从90年代开始,为了对世界生产进行快速响应,逐步实现社会制造资源的快速集成,要求机械制造装备的柔性化程度更高,采用拟实制造和快速成形制造技术1。工业发达国家都非常注重机械制造业的发展,为了用先进技术和工艺装备制造业,机械制造装备工业得到先发展。对比之下,我国目前机械制造业的装备水平还比较落后,表现在大部分工厂的机械制造装备基本上是通用机床加专用工艺装备,数控机床在机械制造装备中的比重还非常低,导致“刚性”强,更新产品速度慢,生产批量不宜太小,生产品种不宜过多;自动化程度基本上还是“一个工人,一把刀,一台机床”,导致劳动生产率低下,产品质量不稳定。 因此,要缩小我国同工业发达国家的差距,我们必须在机械制造装备方面大下功夫,其中最重要的一个方面就是增加数控机床在机械制造装备中的比重1。通过这次毕业设计,可以达到以下目的:1,培养综合运用专业基础知识和专业技能来解决工程实际问题的能力;2,强化工程实践能力和意识,提高本人综合素质和创新能力;3,使本人受到从事本专业工程技术和科学研究工作的基本训练,提高工程绘图、计算、数据处理、外文资料文献阅读、使用计算机、使用文献资和手册、文字表达等各方面的能力;4,培养正确的设计思想和工程经济观点,理论联系实际的工作作风,严肃认真的科学态度以及积极向上的团队合作精神。1.2 国内外数控车床的研究状况和成果 1949年帕森公司正式接受美国空军委托,在麻省理工学院伺服机构试验室的协助下,开 始从事数控机床的研制工作。经过三年时间的研究,于1952年试制成功世界第一台数控机床试验性样机,这是一台采用脉冲乘法器原理的直线插补三坐标连续控制铣床,这便是数控机床的第一代2。 1953年,美国空军与麻省理工学院协作,开始从事计算机自动编程的研究,这就是创制APT(Automatically Programmed Tools )自动编程系统的开始。 1955年,美国空军花费巨额经费订购了大约100台数控机床,此后两年,数控机床在美国进入迅速发展阶段,市场上出现了商品化数控机床。1958年,美国克耐杜列克公司(Keaney &Trecker Co.)在世界上首先研制成功带自动换刀装置的数控机床,称为”加工中心”。 1959年,计算机行业研制出晶体管元器件,因而数控装置中广泛采用晶体管和印制电路板,从而跨入第二代数控时代。同时美国航空工业协会(AIA)和麻省理工学院发展了APT程序语言。 1960年以后,点位控制机床在美国得到迅速发展,数控技术不仅在机床上得到实际应用,而且逐步推广到冲压机、绕线机、焊接机、火焰切割机、包装机和坐标测量机等,在程序编制方面,已由手工编程逐步发展到采用计算机自动编程。除了APT数控语言外,又发展了许多自动骗程语言。 从1960年开始,德国,日本等先进工业国家都陆续开发,生产及使用了数控机床, 1965年,出现了小规模集成电路。由于它体积小,功耗低,使用数控系统的可靠性得以进一步提高,数控系统发展到第三代【2】。 1967年,英国首先把几台数控机床联接成具有柔性的加工系统,这就是最初的FMS(Flexible Manufacturing System,柔性制造系统)。之后,美,欧,日也相继进行开发与应用。 1970年前后,美国英特尔公司开发和使用了微处理器。1974年美,日等国首先研制出以微处理器为核心的数控系统。近20年来,微处理机数控系统的搂控机床得到飞速发展和广泛应用,这就是第五代数控系统(MNC)。20世纪80年代初,国际上又出现了柔性制造单元FMC(FleibieManufacturing Cell) 3。我国从1958年开始研究数控机床,一直到20世纪60年代中期还处于研制,开发时期。当时,一些高等院校,科研单位研制出试验样机,是从电子管起步的。1965年,国内开始研制晶体管数控系统。20世纪60年代末至70年代初研制成了劈锥数控铣床,数控非圆齿轮插齿机。CIL18晶体管数控系统及Z53K1G立式数控铣床。从20世纪70年代开始,数控技术在车,铣 ,镗,磨,齿轮加工,电加工等领域全面展开,数控加工中心在上海,北京研制成功。但由于电子元器件的质量和制造工艺水平差,致使数控系统的可靠性,稳定性末行到解决,因此末能广泛推广。20世纪80年代,我国从昌本发那科公司引进了3,5,6,7等系列的数控系统和直流伺服电机,直流主轴电机等制造技术,以及引进美国GE公司的MCI系统和交流伺服系统,德国西门子VS系列可控硅调速装置,并进行了商品化生产.这些系统可靠性高,功能齐全。与此同时,还自行开发了3、4、5轴联动的数控系统以及双电机驱动的同步数控系统(用于火焰切割机)和新品种的伺服电机,推动了我国数控机床稳定发展,使我国数控机床在性能和质量上产生了一个质的飞跃。1985年,我国数控机床的品种有了新的发展。数控机床品种不断增多,规格齐全。许多技术复杂的大型数控机床,重型数控机床都相继研制出来。为了跟踪国外现代制造技术的发展,北京机床研究所研制出了JCS-FMS-1型和2型的柔性制造单元和柔性制造系统。这个时期,我国在引进,消化国外技术的基础上,进行了大量开发工作。一些较高档次的数控系统(5轴联动),分辨率为0.02的高精度数控系统,数字仿型数控系统为柔性单元配套的数控系统都开发出来了,并造出样机。我国的数控技术经过“六五”,“七五”,“八五”,到“九五”的近20年的发展,基本上掌握了关键技术,建立了数控开发,生产基地,培养了一批数控人才,初步形成了自己的数控产业。“十五”攻关开发的成果:华中号、中华号、航天号和蓝天号4种基本系统建立了具有中国自主版机的数控技术平台。具有中国特色济型数控系统经过这些年来的发展,有了较大的提高。它们逐渐被用户认可,在市场上站住了脚3。目前我国数控机床生产厂有100多家,生产数控机床配套产品的企业有300余家,产品品种包括八大类2000种以上。目前已新开发出数控系统80余种,分为3种型级,即经济型,普及型和高级型。“九五”期间数控机床发展已进入实现产业化阶段,数控机床新开发品种300余种,已有一定的覆盖面。新开发的国产数控机床产品大部分达到期际上20世纪80年代中期水平,部分达到90年代水平,为国家重点建设提供了一批高水平数控机床。1.3 设计内容和研究方法本课题设计一台数控车床-CK20,用于对回转零件的圆柱面,圆弧面,圆锥面,端面,切槽,及各种公、英制螺纹等进行批量、高效、高精度的自动加工。该数控车床可以用于机械,汽车,航空航天等领域,实现加工自动化,提高产品质量,高生产效率。本次设计的主要内容为:1,数控车床CK20总体布局的设计;2,数控车床回转刀架的结构设计及总装图的绘制;3,数控车床刀架,液压夹盘,尾座套筒等部分液压控制系统设计;4,数控车床数控系统的设计;5,典型零件数控加工程序的编制;6,外文资料的翻译。CK20数控车床回转刀架的结构设计及其液压控制系统的设计为本次毕业设计的重点内容,同时也是难点。通过广泛查阅文献资料,参观数控车床实物样机以及组内同学相互讨论等途径,拟定了如下的研究手段:(1),本次研究的数控车床床身采用卧式斜床身结构。因为车床的床身是整个车床的基础支承件,是车床的主体,一般用来放置导轨、主轴箱等重要部件。床身的结构对车床的布局有很大的影响。按照床身导轨面与水平面的相对位置,床身的结构有后斜床身斜滑板,直立床身直立滑板,平床身平滑板,前斜床身平滑板和平床身斜滑板等五种,它们各自有自己的优点和局限性,采用什么样的床身要根据实际情况定。一般来说,中、小规格的数控车床采用斜床身和平床身斜滑板的居多。只有大型数控车床或小型精密数控车床才采用平床身平滑板结构,而立床身结构采用得较少。平床身工艺性好,易于加工制造,由于车床刀架水平放置,对提高刀架的运动精度有好处,,但床身下部空间小,排屑回难。平床身斜滑板结构,再配置向上倾斜导轨防护罩,这样既保持了平床身工艺性好的优点,而且床身宽度也不会太大。斜床身和平床身斜滑板结构在现代数控车床中被广泛采用,是因为这种布局有以下的优点:1) 易实现机电一体化;2) 机床外观整齐,美观,占地面积小;3) 容易设置封闭式防护装置;4) 容易排屑和安装自支排屑器;5) 从工件上切下的炽热切屑不至于堆积在导轨上影响导轨精度;6) 宜人性好,便于操作;7) 便于安装机械手,实现单机自动化。机床床身的五种结构形式图示如下: (a) 斜床身斜滑板 (b) 直立床身直立滑板 (c) 平床身平滑板 (d) 前斜床身平滑板 (e) 平床身斜滑板 图1.1 床身结构示意图(2),数控车床的刀架采用回转刀架。回转刀架的换刀分为刀盘抬起、刀架锁紧和刀盘转位三个动作。其中刀盘抬起和刀架锁紧由液压来实现,而刀盘转位则由伺服电机来驱动。刀盘抬起动作的实现须经以下步骤:数控系统发出刀盘抬起命令液压系统启动压力油进入液压缸右腔活塞向左运动刀架主轴向左移动端齿盘脱离啮合刀盘抬起。刀盘转位动作的实现顺经以下步骤:数控系统发出刀盘转位的命令伺服电机启动蜗轮蜗杆转动刀架主轴转动实现刀盘转位.刀盘锁紧动作的实现顺经以下的步骤: 数控系统发出刀盘锁紧命令液压系统启动压力油进入液压缸左腔活塞向右运动刀架主轴向右移动端齿盘啮合实现刀盘锁紧。 图1.2 回转刀架示意图(3),本车床数控系统选用日本FANUC公司的FANUC系统.因为就目前来说,国内各数控机床用得最多的也是FANUC系统,因为它具有以下的优点: 1) 高可靠性及完整的质量控制体系。 2) 采用大规模及超大规模的专用集成电路芯片。 3) 全自动化工厂生制造。 4) 良好的控制软件设计。 5) 数字式进给伺服和数字式主轴驱动4。 (4),尾座套筒及主轴夹盘的控制亦采用液压来实现。因为液压控制具有操作方便,工作可靠等特点。 2 数控车床刀架结构设计及计算2.1车床刀架的功能,类型和应满足的要求2.1.1车床刀架的功能机床上的刀架是安放刀具的重要部件,许多刀架还直接参与切削工作,如卧式车床上的四方刀架,转塔车床的转塔刀架,回轮式转塔车床的回轮刀架,自动车床的转塔刀架和天平刀架等。这些刀架既安放刀具,而且还直接参与切削,承受极大的切削力作用,所以它往往成为工艺系统中的较薄弱环节。随着自动化技术的发展,机床的刀架也有了许多变化,特别是数控车床上采用电(液)换位的自动刀架,有的还使用两个回转刀盘。加工中心则进一步采用了刀库和换刀机械手,定现了大容量存储刀具和自动交换刀具的功能,这种刀库安放刀具的数量从几十把到上百把,自动交换刀具的时间从十几秒减少到几秒甚至零点几秒。这种刀库和换刀机械手组成的自动换刀装置,就成为加工中心的主要特征5。 2.1.2机床刀架的类型按换刀方式的不同,数控车床的刀架系统主要有回转刀架、排式刀架和带刀库的自动换刀装置等多种形式,下面对这三种形式的刀架作简单的介绍。 1,排式刀架排式刀架一般用于小规格数控车床,以加工棒料或盘类零件为主。它的结构形式为:夹持着各种不同用途刀具的刀夹沿着机床的X坐标轴方向排列在横向滑板上。刀具的典型布置方式如图4所示。这种刀架在刀具布置和机床调整等方面都较为方便,可以根据具体工件的车削工艺要求,任意组合各种不同用途的刀具,一把刀具完成车削任务后,横向滑板只要按程序沿X轴移动预先设定的距离后,第二把刀就到达加工位置,这样就完成了机床的换刀动作。这种换刀方式迅速省时,有利于提高机床的生产效率。宝鸡机床厂生产的CK7620P全功能数控车床配置的就是排式刀架。 2,回转刀架 回转刀架是数控车床最常用的一种典型换刀刀架,一般通过液压系统或电气来实现机床的自动换刀动作,根据加工要求可设计成四方、六方刀架或圆盘式刀架,并相应地安装4把、6把或更多的刀具。回转刀架的换刀动作可分为刀架抬起、刀架转位和刀架锁紧等几个步骤。它的动作是由数控系统发出指令完成的。回转刀架根据刀架回转轴与安装底面的相对位置,分为立式刀架和卧式刀架两种。 3,带刀库的自动换刀装置 上述排刀式刀架和回转刀架所安装的刀具都不可能太多,即使是装备两个刀架,对刀具的数目也有一定限制。当由于某种原因需要数量较多的刀具时,应采用带刀库的自动换刀装置。带刀库的自动换刀装置由刀库和刀具交换机构组成。 (a)回转刀架 (b) 排式刀架 图2.1 机床刀架类型结构图2.1.3机床刀架应满足的要求 1)满足工艺过程所提出的要求。机床依靠刀具和工件间相对运动形成工件表面,而工件的表面形状和表面位置的不同,要求刀架能够布置足够多的刀具,而且能够方便而正确地加工各工件表面, 为了实现在工件的一次安装中完成多工序加工,所以要求刀架可以方便地转位。 2)在刀架以要能牢固地安装刀具,在刀架上安装刀具进还应能精确地调整刀具的位置,采用自动交换刀具时,应能保证刀具交换前后都能处于正确位置。以保证刀具和工件间准确的相对位置。刀架的运动精度将直接反映到加工工件的几何形状精度和表面粗糙度上,为此,刀架的运动轨迹必须准确,运动应平稳,刀架运转的终点到位应准确。面且这种精度保持性要好,以便长期保持刀具的正确位置。 3)刀架应具有足够的刚度。由于刀具的类型、尺寸各异,重量相差很大,刀具在自动转换过程中方向变换较复杂,而且有些刀架还直接承受切削力。考虑到采用新型刀具材料和先进的切削用量,所以刀架必须具有足够的刚度,以使切削过程和换刀过程平稳。 4)可靠性高。由于刀架在机床工作过程中,使用次数很多,而且使用频率也高,所以必须充分重视它的可靠性。 5)刀架是为了提高机床自动化而出现的,因而它的换刀时间应尽可能缩短,以利于提高生产率。目前自动换刀装置的换刀时间在0.86秒之间不等。而且还在进一步缩短。 6)操作方便和安全。刀架是工人经常操作的机床部件之一,因此它的操作是否方便和安全,往往是评价刀架设计好坏的指标。刀架上应便于工人装刀和调刀,切屑流出方向不能朝向工人,而且操作调整刀架的手柄(或手轮)要省力,应尽量设置在便于操作的地方6。2.2数控车床刀架总体方案设计与选择2.2.1刀架的整体方案设计 刀架是车床的重要组成部分,用于夹持切削用的刀具,因此其结构直接影响到车床的切削性能和切削效率。根据前部分对机床刀架类型、性能及其使用场合的综合比较,并结合现有数控车床的实例,本次设计的数控车床CK20拟采用回转刀架中的六工位六方刀架。该刀架的换刀动作分为刀盘抬起、刀盘分度转位和刀盘锁紧三个步骤,其中刀盘抬起和刀盘锁紧定位由液压来实现,而刀盘的分度转位于伺服电机驱动。2.2.2车床刀架的转位机构方案设计 一般来说,机床刀架的转位机构主要有以下几种:1,液压(或气动)驱动的活塞齿条齿轮转位机构 这种由液动机驱动的转位机构调速范围大、缓冲制动容易,转位速度可调,运动平稳,结构尺寸较小,制造容易,因而应用较广泛。而转位角度大小可由活塞杆上的限位档块来调整。也有采用气动的,气动的优点是结构简单,速度可调,但运动不平稳,有冲击,结构尺寸大,驱动力小。故一般多用于非金属切削的自动化机械和自动线的转位机构中。2,圆柱凸轮步进式转位机构 这种转位机构依靠凸轮轮廓强制刀架作转位运动,运动规律完全取决于凸轮轮廓形状。圆柱凸轮是在圆周面上加工出一条两端有头的凸起=轮廓,从动回转盘(相当于刀架体)端面有多个柱销,销子数量与工位数相等。当圆柱凸轮按固定的旋转方向运动时,有的柱销会进入凸轮轮廓的曲线段,使凸轮开始驱动回转盘转位,与此同时有的圆柱销会与凸轮轮廓脱离,当柱销接触的凸轮轮廓由曲线段过渡到直线段时,即使凸轮继续旋转,回转盘也不会转动,即完成了一次刀盘分度转位动作。如此反复下去,就能实现多次的刀架换刀操作。由于凸轮是一个两端开口的非闭合曲线轮廓,所以当凸轮正反转进均可带动刀盘正反两个方向的旋转。这种转位机构转位速度高、精度较低,运动特性可以自由设计选取但制造较困难、成本较高、结构尺寸较大。这种转位机构可以通过控制系统中的逻辑电路或PC程序来自动选择回转方向,以缩短转位辅助时间。3,伺服电机驱动的刀架转位 随着现代技术的发展,可以采用直流(或交流)伺服电机驱动蜗杆、蜗轮(消除间隙)实现刀架转位,转位的速度和角位移均可通过半闭环反馈进行精确控制加以实现,因而这种转位机构转位速度可以进行精确控制、精度高,结构简单、实现容易。所以在现代数控机床中被广泛采用6。 结合上述三种转位机构的转位机理和特点,并结合实际情况,本次设计的数控车床CK20决定采用第三种转位机构-伺服电机驱动的刀架转位。2.2.3刀架定位机构方案设计 目前在刀架的定位机构中多采用锥销定位和端面齿盘定位。由于圆柱销和斜面销定位时容易出现间隙,圆锥销定位精度较高,它进入定位孔时一般靠弹簧力或液压力、气动力,圆锥销磨损后仍可以消除间隙,以获得较高的定位精度。端齿盘定位由两个齿形相同的端面齿盘相啮合而成,由于齿合时各个齿的误差相互抵偿,起着误差均化的作用,定位精度高。端齿盘定位的特点:(1)定位精度高 由于端齿盘定位齿数多,且沿圆周均布,向心多齿结构,经过研齿的齿盘其分度精度一般可达左右,最高可过以上,一对齿盘啮合时具有自动定心作用。所以中心轴的回转精度、间隙及磨损对定心精度几乎没有影响,对中心轴的精度要求低,装置容易。(2)重复定位精度好 由于多齿啮合相当于上下齿盘的反复磨合对研,越磨合精度越高,重复定位精度也越好。(3)定位刚性好,承载能力大,两齿盘多齿啮合。由于齿盘齿部强度高,并且一般齿数啮合率不少于90%,齿面啮合长度不少于60%,故定位刚性好,承载能力大。考虑到端面齿盘具有以上的各种优点,因而本次设计的刀架采用端面齿盘定位6。2.3车床刀架的工作原理下图所示为回转刀架的结构图,刀架的松开和夹紧以及刀盘的分度转位分别由液压系统和直流伺服电机来实现。5为安装刀具的刀盘,它与轴6固定连接,当刀架主轴6带动刀盘旋转时,其上的端齿盘4和固定在刀盘上的端齿盘3脱开,旋转指定刀位后,刀盘的定位由端齿盘的啮合来完成。活塞1支承在一对推力球轴承上,它们可以通过推力球轴承带动刀架主轴来移动。当车床数控系统发出换刀指令后,刀架上的液压缸右腔通入压力油,活塞1及轴6在压力油推动下向左移动,通过刀架主轴使端齿盘3和4脱开啮合,实现刀盘抬起动作。随后伺服电机启动,带动蜗杆2和蜗轮7转动,经刀架主轴6带动刀架的刀盘旋转,实现刀架换刀动作,转位的速度和角位移均通过半闭环反馈系统进行精确控制。当刀盘旋转到指定的刀位后,数控系统发出信号,指令伺服电机停转,这时,压力油进入液压缸的左腔,推动活塞1和刀架主轴6向右移动,使端齿盘3和4重新啮合,实现刀盘锁动作。刀盘被定位夹紧并向数控系统发出信号,于是刀架的转位、换刀循环完成。在车床自动工作状态下,当指定换刀的刀号后,数控系统可以通过内部的运算判断,实行刀盘就近转位换刀,即刀盘既可正转也可以反转。但当手动操作车床时,从刀盘方向观察,只充许刀盘顺时针转动换刀。 图2.2 数控车床回转刀架结构图2.4刀架的设计计算2.4.1 驱动刀架的伺服电机的选择计算刀架驱动电动机的选择应同时满足刀架运转的负载扭矩和起动时的加速扭矩的要求。1) 刀架负载扭矩的计算回转刀架负载扭矩估算方法如下:由于这种刀架的负载扭矩主要用来克服刀具质量的不平衡,估算按如下的情况进行:用平均重力的刀具插满刀盘的半个圆,根据工艺要求所需的各种刀具,确定每个刀具的(包括刀柄)平均重力,而其重心则设定为离刀架回转中心2/3半径处。由以上的方法可知,由于该数控车床采用的是电和液换位的6工位六方自动回转刀架,因而插满刀盘的半个圆需要3把刀具。设工艺要求所需的每个刀具的平均重力=4.9N;刀盘的回转中心直径。则有 2) 刀架加速扭矩的估算 6 式中 -刀架换刀时的电动机转速(r/min); -加速时间,通常取150; -电动机转子惯量(),可查样本; -负载惯量折算到电动机轴上的惯量(). 3) 负载惯量折算到电动机轴上的惯量的估算 式中 -各旋转件的转动惯量(); -各旋转件的角速度(); -各直线运动件的质量(); -各直线运动件的速度(); -伺服电机的角速度()6.4) 各旋转件的转动惯量的估算由刀架的结构简图可知,刀架在完成换刀动作时,伺服电机带动其旋转的部件共3个,它们分别是蜗轮蜗杆副,刀架主轴和刀盘。因而只需估算这三者的传动惯量即可。(1) 刀盘转动惯量的计算刀盘采用烟台环球公司生产的AK31系列数控转塔刀架的配套产品,其主要尺寸如下:刀盘外径;盘也刀架主轴相连的孔径;刀盘宽。则刀盘的转动惯量 =0.45(2) 刀架主轴转动惯量的计算刀架主轴的转动惯量按如下的方法估算:刀架主轴的最大直径;最小直径;刀架主轴长度取。则刀架主轴的转动惯量7=0.0048 (3) 蜗轮蜗杆转动惯量的计算蜗轮蜗杆的转动惯量的估算方法如下:设蜗轮的分度圆直径;其与刀架主轴相连的孔径;蜗轮齿宽.则蜗轮的转动惯量 =0.002 7设蜗杆的分度圆直径;蜗杆长.则蜗杆的转动惯量 =0.00024 (4) 连轴器转动惯量的计算 由于连轴器已标准化,查表取连轴器的转动惯量 (5) 对各旋转件的角速度作如下设定:伺服电机的角速度 ;蜗杆的角速度 ;蜗轮的角速度 ;刀架主轴的角速 ;刀盘转位时的角速度 。则将以上计算所得的数据代入下式: 得负载惯量折算到电动机轴上的惯量 =0.00067 取;刀架换刀时伺服电机的转速;伺服电动机转子转动惯量。则刀架加速扭矩 =0.32 5) 驱动电动机输出扭矩的估算7 驱动电动机的输出扭矩应同时满足刀架负载扭矩和加速扭矩之和,将以上计算的刀架负载扭矩和加速扭矩换为驱动电动机轴上的输出扭矩的公式为: 式中 -传动效率 取0.75。则有 考虑到实际情况比计算时所设定条件复杂,电动机额定转矩应为的倍。所以取 经查阅西门子电机手册,选项用西门子1FT6交流伺服电动机。该电机的额定转速为1500r/min,额定输出转矩为5,额定功率为0.4kW。2.4.2 蜗轮蜗杆的设计计算2.4.2.1各参数的取定本刀架的转位机构是采用直流伺服电机驱动蜗杆、蜗轮(消除间隙)实现刀架的转位,其中蜗轮蜗杆副的传动比取60,伺服电机的转速取1400;刀架的转位速度设计为,由于刀盘为6工位刀盘,则该刀架换一次刀的最大耗时不到9。2.4.2.2 蜗轮蜗杆副的设计计算设计的普通圆柱蜗杆传动的功率为,蜗杆的转速为,传动比为,传动反向,工作载荷稳定,但有不大的冲击,要求设计寿命为。对蜗轮蜗杆的设计计算如下;(1).选择蜗杆传动类型根据的推荐,采用渐开线蜗杆()。(2).选择材料根据库存材料的情况,并考虑到蜗杆传递的功率不大,速度只是中等,故蜗杆用45钢;因希望效率高些,耐磨性好些,故蜗杆螺旋齿面要求淬火,硬度为40-45 HRC。蜗轮用铸锡磷青铜,金属模铸造。为了节约贵重的有色金属,仅齿圈用青铜制造,而轮芯用灰铸铁HT100制造。(3).按齿面接触疲劳强度进行设计根据闭式蜗杆传动的设计准则,先按齿面接触疲劳强度进行设计,再校核齿根弯曲疲劳强度。 1) 确定作用在蜗轮上的转矩按,估取效率,则 =2) 确定载荷系数 因为工作载荷稳定,故取载荷分布不均系数为;由西北工业大学机械原理及机械零件教研室编著的机械设计教材表11-5选取使用系数;由于转速不高,冲击不大,可取动载系数;则 =3) 确定弹性影响系数因选用的是铸锡青铜轮和钢蜗杆相配,故。4) 确定接触系数先假设蜗杆分度圆直径和传动中心距a的比值,从图11-18中可查得=。5) 确定许用接触应力根据蜗轮材料为铸锡磷青铜,金属模铸造,蜗杆螺旋齿面硬度45HRC,可从表11-7中查得蜗轮的基本许用应力为。应力循环次数 寿命系数 则 6) 计算中心距 取中心距a=80mm,因故从表11-2中取模数为m=2mm,蜗杆分度圆直径。这时,从图11-18中可查得接触系数,因为,因此以上计算的结果可用。(2) 蜗杆与蜗轮的主要参数与几何尺寸1) 蜗杆 轴向齿距 直径系数 齿顶圆直径 齿根圆直径 分度圆导程角 蜗杆轴向齿厚 图2.3 蜗杆的结构图1) 蜗轮 蜗轮齿数 ;变位系数 验算传动比,这时传动比误差为,是允许的。蜗轮分度圆直径 蜗轮喉圆直径 蜗轮齿根圆直 蜗轮咽喉母圆半径 图2.4 蜗轮的结构图(4) 校核齿根弯曲疲劳强度 当量齿数 根据,从图11-19中可查得齿形系数。螺旋角系数 许用弯曲应力 从表11-8中查得由制造的蜗轮的基本许用弯曲应力寿命系数 弯曲强度满足要求。(6) 精度等级公差和表面粗糙度的确定 考虑到所设计的蜗杆传动是动力传动,属于通用机械减速器,从GB/T100891988圆柱蜗杆、蜗轮精度中选择8级精度,侧隙种类为f,标注为8f GB/T100891988。然后由有关手册查得要求的公差项目及表面粗糙度,此处从略9。2.4.3 刀架主轴的结构设计计算 由刀架装配图可知,刀架主轴的支承方式为两端游动支承,其一端与刀盘固连,另一端与液压缸的活塞间隙配合,同时起到左端支承作用。而轴的中间部位由刀盘至液压缸的方向分别与圆柱滚子轴承和蜗轮相连,圆柱滚子轴承起右支承作用。已知伺服电机的功率为0.3kW,电机转速,取经蜗轮蜗杆副传动的效率,蜗轮蜗杆副的传动比。1) 先求出刀架主轴上的传递功率、转速和转矩 于是 2) 初步确定轴的最小直径 由式 可初步估算设计轴的最小直径。 式中:为系数,轴的材料不同,则的值会不同; 为轴传递的功率,单位为; 为计算截面处轴的直径,单位为mm; 为轴的转速,单位为;选取轴的材料为45钢,调质处理。根据表153,取,于是得 从而取轴的最小直径为;轴的最大直径为9。图2.5 刀架主轴结构图3车床液压系统设计与计算3.1刀架液压控制系统液压泵及油泵电动机的选择计算由于该刀架刀盘的松开和夹紧均由液压系统通才液压缸活塞的往反运动来实现,当车床在切削加工时,刀具所受的切削力由端面齿盘通过螺栓卸荷给刀架,为使刀架在强力切削下能稳妥可靠地工作,液压缸必须有足够的拉紧力拉住刀盘,使用于夹紧定位的端面齿盘在车床切削过程中始终处于啮合状态。因而液压泵及油泵电动机的配置对液压系统的工作性能有重要的影响7。3.1.1液压油泵的选择选择油泵的主要依据是压力和流量,一般来说,齿轮泵价格低,维修方便,但当系统压力达到较大值时,输油压力脉动大,噪声大。不宜作数控机床的油源;叶片泵的输油压力脉动小,噪声小。因而被广泛用于数控机床的主要油源。所以本液压系统的液压泵选用叶片泵。3.1.2油泵电动机功率的选择计算1) 油泵工作压力的计算油泵工作压力应等于液压缸的工作压力和油液在管道中流动时产生的压力损失之和。即 (1)液压缸工作压力的估算 对于中小型的数控车床,通常推荐液压缸的拉紧力为10。液压缸活塞的有效工作面积设定为;则该刀架液压缸的工作压力。(2)油液压力损失的估算 在液压系统方案未确定之前,先对整个系统的压力损失进行估算,等到正式系统设计完成后,再进行详细的验算。 式中 -油的运动粘度(厘沲); -流量(升/分); -管子的内径(毫米); -管道总长(米); -修正系数。 当时,=1 当时,。流量的计算方式如下:液压系统所需的油泵流量是由工作油缸的尺寸和运动速度的快慢要求来决定的。工作油缸需油量用下式计算: 式中 -活塞运动速度; -活塞有效工作面积。取;取。代入上式得 = 考虑到泄漏的影响油缸实际需油量为: 式中 为修正系数在之间。所以 选用管径油管内径应足够大,以减少油的压力损失。但管径若过大则会使结构笨重、增加制造成本。正确选用管径一般是先选取管中的流速,然后计算管径,再按与标准规格相近的选用。由于 所以 式中 -管子的内径; -通过管子的流量; -管中流速,取0.25。 将上面计算的结果代入式中得 设液压系统管道的总长度 则有 360.64得油泵的工作压力 = 根据能量守恒原理,油泵输出液压油的功率就是需要油泵电动机的功率(不考虑效率)。因此只需算出油泵输出液压油的功率就可以确定该选多大功率的电动机。油泵的输出功率 式中 -液压泵的工作压力; -液压系统的液压油流量。将相关数据代入可得 =则油泵电动机的功率为: 效率可由产品目录查到.如型齿轮泵;型叶片泵,.此外,尚需考虑电动机本身的效率及从电动机到油泵的联轴节或皮带传动等的效率,故电动机的功率应适当地加大7。3.2 液压缸的设计3.2.1 选择液压缸类型由于该液压缸主要用于驱动刀架主轴的直线往反动动.故选用双作用单杆活塞缸.3.2.2液压缸内径和活塞杆直径的计算 计算液压缸的内径和活塞杆直径都必须考虑到设备的类型,例如在金属切削机床中,对于动力较大的机床(刨床,拉床和组合机床)一定要满足牵引力的要求,计算时要以力为主;对于轻载高速的机床(磨床,珩磨机和研磨机等)一定要满足速度的要求,计算时要以速度为主.由于本刀架的抬起动作是在数控车床脱离切削时完成的,因而在换刀过程中并没有承受切削力的作用,因而符合第二种情况,计算时以速度为主17。3.2.2.1以速度为主计算液压缸的内径和活塞杆直径根据执行机构的速度要求和选定的液压泵流量来确定液压缸内径和活塞杆直径,再从标准中选取相近尺寸加以圆整。对于单活塞杆缸来说,当液压油进入油腔时 式中 -输入液压缸的流量; -液压缸活塞的运动速度;设液压缸活塞的往复速度比值为,即:。由于活塞往复运动的速度相等,所以。由相关资料可知,当时,一般取。则得 ;。从GB-2348-80标准中选取的液压缸内径为80mm,活塞杆直径取40mm.3.3数控车床液压系统的设计3.3.1液压回路的选择首先选择调速回路。由本数控车床刀架的工作原理可知,这台车床液压系统的功率较小,推动刀架主轴往复运动的液压缸活塞运动速度低,工作负载变化小,因而可采用进口节流的调速形式。为了解决进口节流调速回路在活塞杆到达最大行程时冲击现象,回油路上要设置背压阀。为保证夹紧力可靠,且能单独调节,在支路上串接减压阀和单向阀;为保证定位,夹紧的顺序动作,在进入夹紧缸的油路上接单向顺序阀来控制,只有当刀盘抬起达到目标值后,液压缸才会反向通油,执行刀盘夹紧动作。为保证工件确已夹紧后车床切削才能动作,在夹紧缸进口处装一压力继电器,只有当夹紧压力达到压力继电器的调节压力时,才能发出信号,车床才能进行切削加工18。3.3.2拟定液压系统图18综合以上分析和所拟定的方案,将各种回路合理地组合成为该车床液压系统原理图,如下图所示。图3.1 液压系统控制回路3.3.3液压系统的控制原理3.3.3.1主轴卡盘的控制主轴卡盘的夹与松开,由一个二位四通电磁换向阀7控制。当卡盘处于夹紧状态时,夹紧力的大小由减压阀4来调整,由压力表6显示卡盘压力。系统压力油经减压阀4,二位四通电磁换向阀7(右位),单向阀12(右位)至液压缸右腔,活塞杆左移,卡盘夹紧。这时液压缸左腔的油液经单向阀12(左位)直接回油箱。反之,系统压力油经减压阀4,二位四通电磁换向阀7(左位),单向阀12(左位)至液压缸左腔,活塞杆右移,卡盘松开。这时液压缸右腔的油液经单向阀12(右位)直接回油箱。支路上的压力继电器5用于测定卡盘的夹紧力是否达到要求,只有卡盘在夹紧状态下的夹紧力达到设定的压力要求,压力继电器5才向数控系统发出电信号,说明工件夹紧可靠,数控车床才进行切削加工。3.3.3.2回转刀架的控制回转刀架换刀时,首先是刀盘松开,刀盘就近转位到达指定的刀位,最后到盘复位夹紧。刀盘的松开与夹紧,由1个二位四通电磁换向阀3控制,当数控系统发出刀盘松开指令后,二位四通电磁换向阀3电磁铁通电,电磁阀3的左位接通,压力油经电磁阀3的左位进入液压缸的左腔,推动液压缸活塞向右运动,实现刀盘抬起动作。而油液则从液压缸右腔经电磁阀3直接流回油箱。当数控系统发出刀盘锁紧动作后,二位四通电磁换向阀3电磁铁断电,压力油经电磁阀3右位进入液压缸右腔,推动活塞向左运动,实现刀盘锁紧动作。液压缸左腔的油液则经电磁阀3的右位直接流回油箱。支路中行程开关11用于控制在刀盘抬起动作中液压缸活塞的行程,当活塞杆碰到行程开关时,即使液压缸的左腔仍然通入压力油,液压缸的活塞也不会移动,这样能够保证液压缸不与液压缸壁相撞。3.3.3.3尾座套筒的控制尾座套筒的伸出与退回由一个三位四通电磁换向阀4控制,套筒伸出工作时的预紧力大小通过减压阀8来调整,并由压力表9显示。当数控系统发出顶紧指令后,三位四通电磁换向阀10电磁铁3通电,压力油经单向阀2,减压阀8,三位四通电磁换向阀10左位进入液压腔右腔,实现顶紧动作,油液则经液压缸左腔直接流回油箱。反之,三位四通电磁换向阀10的电磁铁4通电,压力油经单向阀2,减压阀8,三位四通电磁换向阀10右位进入液压缸左腔,实现退回动作,油液则经液压缸右腔直接流回油箱。4 CK20数控车床的数控系统4.1 数控系统发展及趋势 从1952年美国麻省理工学院研制出第一台试验性数控系统,到现在已走过了46年历程。数控系统由当初的电子管式起步,经历了分立式晶体管式、小规模集成电路式、大规模集成电路式、小型计算机式、超大规模集成电路和微机式的数控系统等6个发展阶段。到80年代,总体发展趋势是:1)、数控装置由NC向CNC发展;2)、广泛采用32位CPU组成多微处理器系统;3)、提高系统的集成度,缩小体积,采用模块化结构,便于裁剪、扩展和功能升级,满足不同类型数控机床的需求;4)、驱动装置向交流、数字化方向发展;5)、CNC装置向人工智能化方向发展;6)、采用新型的自动编程系统,增强通信功能,使数控系统可靠性不断提高。总之,数控机床技术不断发展,功能越来越完善,使用越来越方便,可靠性越来越高,性能价格比也越来越高20。4.2 数控系统的选择根据设计机床的要求,以及充分考虑系统的稳定性以及机床的经济性所以选用SINUMERIK 802C数控系统。SINUMERIK 802C是西门子数控系列产品中的普及型数控系统,性价比高。它将CNC(数控)、PLC(可编程控制器)、HMI(人机界面)和通讯任务集成于一体,可控制3个伺服电机进给轴和1个伺服或变频主轴,系统PLC可直接应用SIMATIC S7-200指令集。CNC编程使用西门子G代码。系统可与计算机通讯,编辑、保存和传输应用程序。模块化的两轴伺服电机驱动器SIMODRIVE 611A和1FT5交流伺服电机与802C系统相配合,构成控制和驱动的完整系统,其性能足以满足使用要求。4.2.1SNUMERIK 802C base line 控制单元和操作面板 SINUMERIK 802C base line 是专门为中国数控机床市场而开发的经济型 CNC 控制系统。其特性如下: 1)紧凑,高度集成于一体的数控单元,操作面板,机床操作面板和输入输出单元; 2)床调试配置数据少,系统与机床匹配更快速、更容易; 3)简单而友好的编程界面,保证了生产的快速进行,优化了机床的使用SINUMERIK 802C base line集成了所有的CNC,PLC,HMI,I/O 于一身: 独立于其他部件进行安装。坚固而又节省空间的设计,使它可以安装到最方便用户的位置; 4)操作面板提供了所有的数控操作,编程和机床控制动作的按键以及8英寸LCD显示器,同时还提供12个带有LED 的用户自定义键。工作方式选择(6 种),进给速度修调,主轴速度修调,数控启动与数控停止,系统复位均采用按键形式进行操作; 5)INUMERIK 802C base line 的输入/输出点为48个24V的直流输入和16个24V的直流输出。输出同时工作系数为0.5 时负载能力可达0.5A。为了方便安装,输入输出采用可移动的螺丝夹紧端子,该端子可用普通的螺丝刀来紧固; 6)SINUMERIK 802C base line可控制三个进给轴。SINUMERIK 802C base line 提供传统的± 10V 的伺服驱动接口; 7)除三个进给轴外, SINUMERIK 802C base line 都提供一个± 10V 的接口用于连接主轴驱动; 8)SINUMERIK 802C base line 基本配置的驱动系统为 - SIMODRIVE base line,3Nm/6Nm 和6Nm/8Nm 双轴模块与 - 11Nm单轴模块,驱动带单极对旋转变压器的1FK 7伺服电机, - 当需要进行功率扩展应用时,可以选用SIMODRIVE 611U 伺服驱动系统和带单极对旋转变压器的1FK 7 伺服电机。 SINUMERIK 802C base line控制软件已经存储在数控部分的Flash-EPROM(闪存)上,Toolbox软件工具(调整所用的软件工具)包含在标准的供货范围内。系统不再需要电池,免维护设计。采用电容防止掉电引起的数据丢失。程序的变化和新程序软件存储。系统软件面向车床和铣床应用,并可单独安装。在每一个工具盒中都包含有车床和铣床的PLC 程序示例,以便用户能很快地调试完毕。 4.3 SINUMERIK 802C base line CNC控制器与伺服驱动SIMODRIVE 611U和1FK7伺服电机的连接图如下20: 图4.1 数控系统硬件连接图4.3典型零件的数控编程【21】 编制如图十一所示零件的加工程序,材料为45钢,棒直径为50mm。1.刀具设置选择90度正偏刀为1号刀,2号割槽刀(宽4mm),60度硬质合金螺纹刀为3号刀。2.工艺路线1)工件伸出卡盘外95mm,找正后夹紧。2)用90度外圆刀车工件右端面,粗车外圆至48.5×90。3)先车出40.5×50圆柱,再车出22.5×20圆柱。4)车右端圆弧,车圆锥,分别留0.5mm精车余量。5)精车外形轮廓至尺寸。6)割退刀槽,并用割槽刀右刀尖倒出M48×3螺纹左端C2倒角。7)换螺纹刀车双线螺纹。8)割断工件。3.相关计算1)计算双线螺纹M48×3(P1.5)的底径。 d1=d-2×0.62P=(48-2×0.62×1.5)mm=46.32mm。2)确定背吃刀量分布:1mm、0.5mm、0.3mm、0.06mm 图4.2 加工零件图4.加工程序 程序语句 程序注释%KG101;程序名N10 G90 G94 G54;采用G54工作坐标系,分进给,绝对值编程N20 S600 M03;主轴正转,转速600r/minN30 T1 D1 M08;换1号外圆刀,切削液开N40 G00 X55 Z0;快速进刀N50 G01 X0 F80;车端面N60 G00 X48.5 Z2;快速退刀N70 G01 Z-90 F150;粗车外圆N80 G00 X52 Z2;快速退刀N90 G00 X44;快速进刀N100 G01 Z-50;粗车外圆N110 G00 X42 Z2;快速退刀N120 G00 X40.5;快速进刀N130 G01 Z-50;粗车外圆N140 G00 X42 Z2快还退刀N150 G00 X26;快速进刀N160 G01 Z-20;粗车外圆N170 G00 X30 Z2;快速退刀N180 G00 X22.5;快速进刀N190 G01 Z-20;粗车外圆N200 G00 X30 Z2;快速退刀N210 G00 X0;快速进刀N220 G03 X26 Z-11 CR=13 F100;车R13圆弧N230 G00 Z0.5;快速退刀N240 G00 X0;快速进刀N250 G03 X23 Z-11 CR=11.5;车R11.5圆弧N260 G00 X35.5 Z-18;快速进刀N270 G01 X35.5 Z-20;N280 X40.5 Z-50;车圆锥N290 G00 X100 Z100;快退至起刀点N295 S1000 M03;主轴变速,转速1000r/minN300 G00 X2 Z2;快速进刀N160 G01 X0 Z0 F60;进刀至(0,0)点N170 G03 X22 Z-11 CR=11;精车R11圆弧N180 G01 Z-20;精车22外圆N190 X35;精车台阶N200 X40 Z-50;精车圆锥N210 X44;精车台阶N220 X47.5 Z-52;倒角N230 Z-70;精车M48螺纹外圆至47.8N240 X47.975;N250 Z-90;精车48外圆N260 G00 X100 Z100;快退至起刀点N270 T2 D1;换2号割槽刀N280 S420 M03;主轴变速,转速420r/minN290 G00 X50 Z-74;快速进刀至(X50,Z-74)N300 G01 X40.2 F30;割槽至40.2N310 G00 X50;快速退刀N320 G00 Z-78;向左移动4mmN330 G01 X40 F30;割槽至40N340 Z-74;向右横拖4mm,消除割刀接缝线N350 G00 X50;快速退刀N360 G00 Z-71;快速进刀N370 G01 X44 Z-64 F30;用割槽刀右刀尖倒M48螺纹左端2×45度倒角N380 G00 X100;快退至起刀点N390 Z100;
展开阅读全文