高中数学北师大版选修22教案:第1章 分析法和综合法在生活中的运用

上传人:仙*** 文档编号:42393718 上传时间:2021-11-26 格式:DOC 页数:2 大小:138KB
返回 下载 相关 举报
高中数学北师大版选修22教案:第1章 分析法和综合法在生活中的运用_第1页
第1页 / 共2页
高中数学北师大版选修22教案:第1章 分析法和综合法在生活中的运用_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述
2019版数学精品资料(北师大版)分析法和综合法在生活中的运用所谓综合法,是指“由因导果”的思想方法,即从已知条件或某些已经证明过的结论出发,不断地展开思考,去探索结论的方法所谓分析法,是指“执果索因”的思想方法,即从结论出发,不断地去寻找须知,直至达到已知事实为止的方法例1:某公司一年购买某种货物400吨,每次都购买吨,运费为4万元/次,一年的总存储费用为万元,试证明当时一年的总运费与总存储费用之和最小。(综合法)证明:由题意得总费用,由均值不等式有:当且仅当即时取“”)故当时一年的总运费与总存储费用之和最小。评述:本题考查了不等式在实际生活中的应用,考查了均值不等式等号成立的条件.运用的方法是综合法,从已知条件出发,不断地展开思考,去探索结论例2:某种商品原来定价每件p元,每月将卖出n件,假若定价上涨x成(这里x成即,0x10.每月卖出数量将减少y成,而售货金额变成原来的 z倍.(1)设y=ax,其中a是满足a1的常数,用a来表示当售货金额最大时的x的值;(2)若y=x,求使售货金额比原来有所增加的x的取值范围.(分析法) 解:(1)由题意知某商品定价上涨x成时,上涨后的定价、每月卖出数量、每月售货金额分别是:p(1+)元、n(1)元、npz元,因而,在y=ax的条件下,z=ax2+100+.由于a1,则010.要使售货金额最大,即使z值最大,此时x=.(此处用分析法)(2)由z= (10+x)(10x)1,解得0x5.评述:本题考查综合应用所学数学知识、思想和方法解决实际问题的能力,考查函数关系、不等式性质、最大值、最小值等基础知识,考查利用均值不等式求最值的方法、阅读理解能力、建模能力.函数定义域通常都是解不等式得到,利用不等式方法可以求出函数值的取值范围.如在实际问题应用中,主要有构造不等式求解或构造函数求函数的最值等方法,本题利用最值这个“结果”去索“等号成立的条件”这个因,避免了不必要的错误.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 成人自考


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!