高中数学北师大版选修22教案:第1章 数学归纳法在证明恒等式中的应用

上传人:仙*** 文档编号:42191017 上传时间:2021-11-25 格式:DOC 页数:4 大小:223.50KB
返回 下载 相关 举报
高中数学北师大版选修22教案:第1章 数学归纳法在证明恒等式中的应用_第1页
第1页 / 共4页
高中数学北师大版选修22教案:第1章 数学归纳法在证明恒等式中的应用_第2页
第2页 / 共4页
高中数学北师大版选修22教案:第1章 数学归纳法在证明恒等式中的应用_第3页
第3页 / 共4页
点击查看更多>>
资源描述
2019年北师大版精品数学资料数学归纳法在证明恒等式中的应用数学归纳法是直接证明的一种重要方法,是证明与正整数n有关的数学命题的一种重要方法,也是高考的热点问题之一不但要求能用数学归纳法证明现成的结论,而且加强了对于不完全归纳法应用的考查既要求善于发现、归纳结论,又要求能证明结论的正确性数学归纳法的应用十分广泛下面就数学归纳法在证明恒等式中的应用问题加以规律总结与实例剖析1证明恒等式中的规律数学归纳法可以证明与正整数有关的恒等式问题,其一般规律及方法:关键在于第二步,它有一个基本格式,不妨设命题为:P(n):f(n)=g(n),其第二步相当于做一道条件等式的证明题:已知:f(k)=g(k),求证:f(k+1)=g(k+1)通常可采用的格式分为三步:(1)找出f(k+1)与f(k)的递推关系;(2)把归纳假设f(k)=g(k)代入;(3)作恒等变形化为g(k+1)示意图为:结构相同递推恒等变形归纳假设f(k+1)=f(k)+ak=g(k)+ak=g(k+1)当然递推关系不一定总是象f(k+1)=f(k)+ak这样的表达式,因此更为一般性的示意图为:f(k+1)=Ff(k),k,f(1)=Fg(k),k,g(1)=g(k+1)2证明恒等式中的应用(1)代数恒等式的证明例1用数学归纳法证明:1+4+7+(3n2)=n(3n1)(nN*)分析:在第二步的证明过程中通过利用归纳假设,结合等式的变换与因式分解、变形,从而得以证明证明:(1)当n=1时,左边=1,右边=1,所以当n=1时,命题成立;(2)假设当n=k(kN*)时命题成立,即1+4+7+(3k2)=k(3k1),则当n=k+1时,1+4+7+(3k2)+3(k+1)2=k(3k1)+(3k+1)=(3k2+5k+2)=(k+1)(3k+2)=(k+1)3(k+1)1,即当n=k+1时,命题成立;根据(1)、(2)可知,对一切nN*,命题成立点评:数学归纳法的证明过程非常讲究“形式”,归纳假设是必须要用到的,假设是起到桥梁作用的,桥梁不用或是断了,数学归纳就通不过去了,递推性无法实现在由n=k时结论正确证明n=k+1时结论也正确的过程中,一定要用到归纳假设的结论,即n=k时结论变形练习1:已知nN*,证明:1+=+答案:(1)当n=1时,左边=1=,右边=,等式成立;(2)假设当n=k时等式成立,即有1+=+,那么当n=k+1时,左边=1+=+=+=+=右边,所以当n=k+1时等式也成立;综合(1)、(2)知对一切nN*,等式都成立(2)三角恒等式的证明例2用数学归纳法证明:tanxtan2x+tan2xtan3x+tan(n1)xtannx=n(n2,nN*)分析:本题在由假设当n=k时等式成立,推导当n=k+1时等式也成立时,要灵活应用三角公式及其变形公式本题中涉及到两个角的正切的乘积,联想到两角差的正切公式的变形公式:tantan=1,问题就会迎刃而解证明:(1)当n=2时,左边=tanxtan2x=tanx=,右边=2=2=2=,等式成立;(2)假设当n=k(k2,kN*)时,等式成立,即tanxtan2x+tan2xtan3x+tan(k1)xtankx=k,则当n=k+1时,tanxtan2x+tan2xtan3x+tan(k1)xtankx+tankxtan(k+1)x=k+tankxtan(k+1)x, (*)由tanx=tan(k+1)xkx=,可得tankxtan(k+1)x=1,代入(*)式,可得右边=k+1=(k+1),即tanxtan2x+tan2xtan3x+tan(k1)xtankx+tankxtan(k+1)x=(k+1),即当n=k+1时,等式也成立;由(1)、(2)知等式对任何nN*都成立点评:数学归纳法在第二步的证明中,“当n=k时结论正确”这一归纳假设起着已知的作用,“当n=k+1时结论正确”则是求证的目标在这一步中,一般首先要先凑出归纳假设里给出的形式,以便利用归纳假设,然后再进一步凑出n=k+1时的结论要正确选择与命题有关的知识及变换技巧变形练习2:用数学归纳法证明:coscoscoscos=(nN*)答案:(1)当n=1时,左边=cos,右边=cos,等式成立;(2)假设当n=k时等式成立,即有coscoscoscos=则当n=k+1时,coscoscoscoscos=cos=cos=,即当n=k+1时,等式也成立;由(1)、(2)知等式对任何nN*都成立
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 压缩资料 > 基础医学


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!