资源描述
跟踪强化训练(十八)一、选择题1在数列an中,a11,对于所有的n2,nN都有a1·a2·a3··ann2,则a3a5()A. B. C. D.解析解法一:令n2,3,4,5,分别求出a3,a5,a3a5,故选A.解法二:当n2时,a1·a2·a3··ann2.当n3时,a1·a2·a3··an1(n1)2.两式相除得an2,a3,a5,a3a5,故选A.答案A2已知a11,ann(an1an)(nN*),则数列an的通项公式是an()An B.n1Cn2 D2n1解析由ann(an1an),得,所以数列为常数列,所以1,所以ann,故选A.答案A3已知数列an满足a12,an1(nN*),则a1·a2·a3··a20xx()A6 B6 C2 D2解析a12,an1,a23,同理,a3,a4,a52,an4an,a1a2a3a41,a1·a2·a3··a20xx(a1a2a3a4)504×a11×22.故选D.答案D4(20xx·衡水中学二调)已知Sn是数列an的前n项和,a11,a22,a33,数列anan1an2是公差为2的等差数列,则S25()A232 B233 C234 D235解析数列anan1an2是公差为2的等差数列,an3an(an1an2an3)(anan1an2)2,a1,a4,a7,是首项为1,公差为2的等差数列,a2,a5,a8,是首项为2,公差为2的等差数列,a3,a6,a9,是首项为3,公差为2的等差数列,S25(a1a4a7a25)(a2a5a8a23)(a3a6a9a24)9×18×28×3233,故选B.答案B5(20xx·郑州模拟)已知等比数列an的前n项和为Sn,则下列一定成立的是()A若a3>0,则a20xx<0B若a4>0,则a20xx<0C若a3>0,则S20xx>0D若a4>0,则S20xx>0解析根据等比数列的通项公式得a20xxa1·q20xxa3q20xx,a20xxa1q20xxa4q20xx,易知A,B错误对于选项C,因为a3a1q2>0,所以a1>0,当q>0时,任意an>0,故有S20xx>0;当q<0时,仍然有S20xx>0,C正确对于选项D,可列举公比q1的等比数列1,1,1,1,显然满足a4>0,但S20xx0,故D错误故选C.答案C6(20xx·山西大同模拟)已知数列an的通项公式为an(1)n(2n1)·cos1(nN*),其前n项和为Sn,则S60()A30 B60 C90 D120解析由题意可得,当n4k3(kN*)时,ana4k31;当n4k2(kN*)时,ana4k268k;当n4k1(kN*)时,ana4k11;当n4k(kN*)时,ana4k8k.a4k3a4k2a4k1a4k8,S608×15120.答案D二、填空题7已知数列an的前n项和为Sn,且满足log2(Sn1)n1(nN*),则an_.解析由已知可得Sn12n1,则Sn2n11.当n1时,a1S13,当n2时,anSnSn12n112n12n,因为n1时不满足an2n,故an答案8(20xx·河南新乡三模)若数列an1an是等比数列,且a11,a22,a35,则an_.解析a2a11,a3a23,q3,an1an3n1,ana1a2a1a3a2an1an2anan1133n2,a11,an.答案9(20xx·安徽省淮北一中高三最后一卷改编)若数列an满足d(nN*,d为常数),则称数列an为“调和数列”,已知正项数列为“调和数列”,且b1b2b20xx20xx0,则b2b20xx的最大值是_解析因为数列是“调和数列”,所以bn1bnd,即数列bn是等差数列,所以b1b2b20xx20xx0,所以b2b20xx20.又>0,所以b2>0,b20xx>0,所以b2b20xx202,即b2b20xx100(当且仅当b2b20xx时等号成立),因此b2b20xx的最大值为100.答案100三、解答题10(20xx·郑州质检)已知数列an的首项a11,前n项和Sn,且数列是公差为2的等差数列(1)求数列an的通项公式;(2)若bn(1)nan,求数列bn的前n项和Tn.解(1)由已知条件得1(n1)×22n1,Sn2n2n.当n2时,anSnSn12n2n2(n1)2(n1)4n3.当n1时,a1S11,而4×131,an4n3.(2)由(1)可得bn(1)nan(1)n(4n3),当n为偶数时,Tn1591317(4n3)4×2n,当n为奇数时,n1为偶数,TnTn1bn12(n1)(4n1)2n1.综上,Tn11(20xx·北京海淀模拟)数列an的前n项和Sn满足Sn2ana1,且a1,a21,a3成等差数列(1)求数列an的通项公式;(2)设bn,求数列bn的前n项和Tn.解(1)Sn2ana1,当n2时,Sn12an1a1,an2an2an1,化为an2an1.由a1,a21,a3成等差数列得,2(a21)a1a3,2(2a11)a14a1,解得a12.数列an是等比数列,首项为2,公比为2.an2n.(2)an12n1,Sn2n12,Sn12n22.bn.数列bn的前n项和Tn.12.(20xx·山东卷)已知xn是各项均为正数的等比数列,且x1x23,x3x22.(1)求数列xn的通项公式;(2)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2),Pn1(xn1,n1)得到折线P1P2Pn1,求由该折线与直线y0,xx1,xxn1所围成的区域的面积Tn.解(1)设数列xn的公比为q,由已知知q>0.由题意得所以3q25q20.因为q>0,所以q2,x11.因此数列xn的通项公式为xn2n1.(2)过P1,P2,Pn1向x轴作垂线,垂足分别为Q1,Q2,Qn1.由(1)得xn1xn2n2n12n1,记梯形PnPn1Qn1Qn的面积为bn,由题意bn×2n1(2n1)×2n2,所以Tnb1b2bn3×215×207×21(2n1)×2n3(2n1)×2n2,2Tn3×205×217×22(2n1)×2n2(2n1)×2n1.得Tn3×21(2222n1)(2n1)×2n1(2n1)×2n1.所以Tn.
展开阅读全文