资源描述
精选优质文档-倾情为你奉上个别化教学方案学员姓名 : 年 级:六年级 辅导科目:数学 学科教师:陈栋军授课日期2017年 授课时段教学目标1、能理解有理数的意义,会正确判断底数,理解幂的含义,掌握有理数乘方运算的符号法则和有理数乘方的运算.2、创设情境,感受到数学的奇妙性,形成一定的数感、符号感,发展抽象思维3、在问题解决的过程中,能认识到数学知识与实际生活的密切相关,增强实际问题与数学问题之间相互转化的意识和能力.授课单元单元一 有理数的乘方成长目标注意细节,在生活中需要我们留心生活、细心观察、总结规律,温故知新,在巩固中获得的才是真正的知识。单元二 有理数的综合教学内容单元一 有理数的乘方【1、提问:我们已经学过平方,22代表什么意思?注意细节,在生活中需要我们留心生活、细心观察、总结规律【一、乘方及相关概念个相同因数相乘,记作 求个相同因数的积的运算,叫做乘方.乘方是一种运算,乘方的结果叫做幂.在中,相同因数叫做底数,相同因数的个数叫做指数. 读作.(是任意有理数,是正整数)特别的, (是正整数)二、例题分析 1、 指出下列各组乘方中的底数、指数1),2),3)2乘方运算的符号法则(1)观察并判断下列各数的符号,你能得出什么结论? (2)乘方运算的符号法则正数的任何次幂都是正数;负数的奇数次幂是负数,负数的偶次幂是正数(3)例题分析计算:(1) (2) (3) 3计算器中乘方的使用注意细节,在生活中需要我们留心生活、细心观察、总结规律【练】1填表运算加乘乘方结果差商2填表乘方底数指数3填表-4 010-1-12347101单元二 有理数的综合【本章主要学习了哪些内容?注意细节,在生活中需要我们留心生活、细心观察、总结规律【讲解】考点1、正数和负数 正数:大于零的数 负数:小于零的数(在正数前面加上负号“”的数)注意:0既不是正数也不是负数,它是正负数的分界点不一班教育对于正数和负数,不能简单理解为带“+”号的数是正数,带“”号的数是负数例1、 向北走2000米与向南走1000米,若规定向北走为正,则向北走2000米可记作 ,向南走1000米,原地不动课记作 例2、 七年级一班第一小组五名同学某次数学测验的平均成绩为85分,一名同学以平均成绩为标准,超过平均分记正,将五名同学的成绩分别记作15分,4分,0分,4分,15分。这五名同学的实际成绩分别是多少分?例3、 观察下面依次排列的一列数,请接着写出后面的数,你能说出第15个、第101个、第2010个的数是什么?1)、1、2、+3、4、5、+6、7、8、 、 、 2)、1、3、5、7、 、 、 易错点:1、 误认为凡带正号的数就是正数,误认为凡带负号的数就是负数 例:a一定是正数吗?2、 对于“0”的含义理解不准确例:下列说法错误的是( )A、0是自然数 B、0是整数 C、0是偶数 D、海拔0米表示没有海拔考点2、有理数1、有理数的分类按定义分: 按性质符号分:有理数注意:1、有理数只包括正数和分数,无限不循环小数不是有理数,如圆周率就不是有理数了。 2、0是整数不是分数不一班教育例1、把下列各数填在相应的集合内:,-3,2,-1,-0.58,0,-3.14,0.618,10整数集合: 分数集合: 非负数集合: 例2、下列说法正确的是( )A 有理数分为正数和负数 B 有理数-a一定表示负数C 正整数、正分数、负整数、负分数统称为有理数 D 有理数包括整数和分数2、数轴(重点)定义:规定了原点、正方向、单位长度的直线数轴的含义:(1)数轴是一条直线,可以向两边无限延伸(2)数轴的三要素:原点、正方向、单位长度、这三者缺一不可(3)数轴一般取右(或向上)为正方向,数轴的原点的选定,正方向的取向,单位长度大小的确定都是根据实际需要规定的。(4)同一数轴的单位长度必须一致例1、图中哪 一个表示数轴?并说出理由。例2、请画出一条数轴,在并且在数轴上标出下面的有理数:3,-2,-3.5,0,+2,0.5.3、 相反数(重点)定义:只有符号不同的两个数叫做相反数。(在数轴上分别位置原点的两侧,到原点的距离相等的两个点所表示的数叫做互为相反数。)相反数的表示方法及多重符号的化简:(1)例1、有理数的相反数是( )(A) (B) (C)3 (D) 3例2、a的相反数是 , -a的相反数是 , 0的相反数是 例3、若a和b互为相反数,则a+b=例4、如果,那么,两个实数一定是 ( )A.都等于0 B.一正一负 C.互为相反数 D.互为倒数例5、如果与1互为相反数,则等于( )A2BC1D4、绝对值(难点)绝对值的定义:数轴上表示a的点与原点的距离叫做a的绝对值,记为 a,读作:a的绝对值因为数的绝对值是表示两点之间的距离,所以一个数的绝对值不可能是负数。即:任何数的绝对值都是正数(0的绝对值是0)绝对值的代数定义:1)一个正数的绝对值是它本身 2)一个负数的绝对值是它的相反数 3)0的绝对值是0 绝对值的计算规律:(1) 互为相反数的两个数的绝对值相等(2) 若,则a=b或a=-b;(3) 若例1、如果| -a | = -a,下列成立的是( )A .a<0 B.a0 C.a>0 D.a0例2、 的绝对值是8。例3、若,则b= ,若 ,若,则a 0例4、若,则等于( )A、2 B、8 C、2或8 D、例5、已知(1) 求a,b的值(2) 求的值求例6、计算: 例7、 (2)例8、根据,解答下列问题(1)当x为何值时, 有最小值?最小值是多少?(2)当x为何值时, 有最大值?最大值是多少?例9、已知某零件的标准直径是10mm,超过规定直径长度的数量(单位:mm)记作正数,不足规定直径长度的数量(单位:mm)记作负数,检验员某次抽查了5件样品,检查的结果如下表:序号12345直径长度(mm)+0.1-0.15+0.2-0.05+0.25(1) 试指出哪件样品的大小最符合要求;(2) 如果规定偏差的绝对值在0.18mm之内是正品,偏差的绝对值在0,18mm0.22mm之间是次品,偏差绝对值查过0.22mm是废品,那么上述5件样品中,哪些是正品,哪些是次品,哪些是废品?易错点:1、画数轴时,缺少要素2、误认为,则a>0;若,则a<0例:已知,则a的值是( )A、正数 B、负数 C、非正数 D、非负数 3、相反数和倒数的定义相混淆5、有理数的大小比较(1)正数大于0,0大于负数,正数大于负数(2)两个负数,绝对值大的反而小例1、比较下列有理数的大小-(-5)和- -(+3)与0 例2、若m>0,n<0,且|m|>|n|,用“>”把、连接起来。考点3、有理数的加减(重难点)1、有理数加法(1)同号两数相加,取相同的符号,并把其绝对值相加;(2)异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;(3)互为相反数的两个数相加得零;(4)一个数与零相加,仍得这个数。例1、a与b互为相反数,b与c相乘的积是最大的负整数,d与e的和等于-2,则的值是多少?例2、读一读:式子“1+2+3+4+5.+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写不方便,为简单起见,我们可以将“1+2+3+4+5.+100”表示为,这是求和符号。例如“1+3+5+7+9+.+99”(即从1开始的100以内的连续奇数的和)可表示为。通过对以上材料的阅读,请回答问题:(1)2+4+6+8+.+100(即从2开始的100以内的连续偶数的和求和符号表示为_;(2)计算:_(填写最后的计算结果)。例3、从图(1)中找规律,并在图(2)填上合适的数2、有理数减法有理数减法法则中,字母a,b表示任意有理数;0减去任何数得这个数的相反数。有理数的减法可转化为有理数的加法进行计算,不要将减法法则与加法法则中异号两书相加混淆。计算有理数的减法时,要把减号变为加好,把减数变为它的相反数,即必须同时改变两个符号:意识运算符号由“-”变为“+”;而是减数的性质符号由正变为负或由负变为正。例1、下列说法正确的是( )A. 两数相减,被减数一定大于减数B. 0减去一个数仍得这个数C. 互为相反的两个数差为0D. 减去一个正数,差一定小于被减数例2、计算:(1) (2) (3) (4)例3、列出算式并计算下列各题:(1)(2) 潜水员从海平面以下24m处上升到海平面以下15m处,此潜水员上升了多少米?例4、已知a<0,b<0,且试判断a-b的符号。3、有理数加减的综合运用例1、计算:(1) (2)(3)1-2-3+4+5-6-7+8+9-11+12+.+2005-2006-2007+2008+2009-2010.(4)例2、以地面为基准,A处高+2.5米,B处高为-17.8米,C处高-32.44m,问:(1) A处比B出高多少?(2) B处和C处哪个高?高多少?(3) A处和C处哪个低?低多少?例3、小亮做这样一道题:“计算”,其中表示被污染看不清的一个数,他翻开答案知道该题的结果是6,那么 表示的数是多少?例4、-a,-b在数轴上的位置如图, -b -a 0化简:温故知新,在巩固中获得的才是真正的知识。【】1、正数和负数的有关概念(1)正数:比0大的数叫做正数;负数:比0小的数叫做负数;0既不是正数,也不是负数。(2)正数和负数表示相反意义的量。2、有理数的概念及分类有理数是整数和分数的统称。通常有两种分类: 3、有关数轴(1)数轴的三要素:原点、正方向、单位长度。数轴是一条直线。(2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。(3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。4、绝对值与相反数(1)绝对值:在数轴上表示数a的点与原点的距离,叫做a的绝对值,记作:。 一个正数的绝对值等于本身,一个负数的绝对值等于它的相反数,0的绝对值是0.(2)相反数:符号不同、绝对值相等的两个数互为相反数。 若a、b互为相反数,则a+b=0; 相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。(3)绝对值最小的数是0;绝对值是本身的数是非负数。任何数的绝对值是非负数。本身之迷倒数是它本身的数是±1 绝对值是它本身的数是非负数(正数和0)平方等于它本身的数是0,1 立方等于经本身的数是±1,0偶数次幂等于本身的数是0、1 奇数次幂等于本身的数是±1,0相反数是它本身的数是0数之最最小的正整数是1 最大的负整数是-1 绝对值最小的数是0平方最小的数是0 最小的非负数是0 最大的非正数0没有最大和最小的有理数 没有最大的正数和最小的负数 5、利用绝对值比较大小 两个正数比较:绝对值大的那个数大; 两个负数比较:先算出它们的绝对值,绝对值大的反而小。6、有理数加法(1)符号相同的两数相加:和的符号与两个加数的符号一致,和的绝对值等于两个加数绝对值之和(2)符号相反的两数相加:当两个加数绝对值不等时,和的符号与绝对值较大的加数的符号相同,和的绝对值等于加数中较大的绝对值减去较小的绝对值;当两个加数绝对值相等时,两个加数互为相反数,和为零(3)一个数同零相加,仍得这个数加法的交换律:a+b=b+a加法的结合律:(a+b)+c=a+(b+c)7、有理数减法:减去一个数,等于加上这个数的相反数。8、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写。例如:14+12+(-25)+(-17)可以写成省略括号的形式:14+12 -25-17,可以读作“正14加12减25减17”,也可以读作“正14、正12、负25、负17的和.”9、有理数的乘法两个数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘都得0。第一步:确定积的符号 第二步:绝对值相乘交换律:结合律:分配律:10、乘积的符号的确定几个有理数相乘,因数都不为 0 时,积的符号由负因数的个数确定:当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。几个有理数相乘,有一个因数为零,积就为零。11、倒数:乘积为1的两个数互为倒数,0没有倒数。 正数的倒数是正数,负数的倒数是负数。(互为倒数的两个数符号一定相同) 倒数是本身的只有1和-1。12、有理数的除法除以一个不等于0的数,等于乘这个数的倒数;0除以任何一个不等于0的数,都得0。13、有理数的乘方(1)求相同因数的积的运算叫做乘方.乘方运算的结果叫幂.一般地,记作,读作:a的n次方,表示n个a相乘;其中,a是底数,n是指数,称为幂。(2)正数的任何次幂都是正数.负数的奇数次幂是负数,负数的偶数次幂是正数.(3)一个数的平方为它本身,这个数是0和1; 一个数的立方为它本身,这个数是0、1和-1。14、科学计数法一般情况下,把大于10的数表示成(n为正整数)的形式时,为了统一标准,规定了a的范围,(1a10),这种记数方法叫做科学记数法。15、有理数混合运算有理数混合运算的顺序:先算乘方,再算乘除,最后算加减,有括号的先算括号里的。16、比较两个有理数大小的方法有:(1) 根据有理数在数轴上对应的点的位置直接比较;(2) 根据规定进行比较:两个正数;正数与零;负数与零;正数与负数;两个负数,体现了分类讨论的数学思想;(3) 做差法:a-b>0 a>b;(4) 做商法:a/b>1,b>0 a>b.专心-专注-专业
展开阅读全文