资源描述
+2019年数学高考教学资料+第三节等比数列及其前n项和全盘巩固1设Sn是等比数列an的前n项和,a3,S3,则公比q()A. B C1或 D1或解析:选C当q1时,a1a2a3,S3a1a2a3,符合题意;当q1时,由题意得解得q.故q1或q.2各项都为正数的等比数列an中,首项a13,前三项和为21,则a3a4a5()A33 B72 C84 D189解析:选Ca1a2a321,a1a1·qa1·q221,33×q3×q221,来源:即1qq27,解得q2或q3.an>0,q2,a3a4a521×q221×484.3已知等比数列an满足an>0(nN*),且a5a2n522n(n3),则当n1时,log2a1log2a3log2a5log2a2n1等于()A(n1)2 Bn2 Cn(2n1) D(n1)2解析:选B由等比数列的性质可知a5a2n5a,又a5a2n522n,所以an2n.又log2a2n1log222n12n1,所以log2a1log2a3log2a5log2a2n1135(2n1)n2.4已知数列an满足a15,anan12n,则()A2 B4 C5 D.解析:选B依题意得2,即2,故数列a1,a3,a5,a7,是一个以5为首项、2为公比的等比数列,因此4.5数列an中,已知对任意nN*,a1a2a3an3n1,则aaaa()A(3n1)2 B.(9n1) C9n1 D.(3n1)解析:选Ba1a2a3an3n1,a1a2a3an13n11.由,得an3n3n12×3n1.当n2时,an3n3n12×3n1,又n1时,a12适合上式,an2×3n1,故数列a是首项为4,公比为9的等比数列因此aaa(9n1)6已知an为等比数列,下面结论中正确的是()Aa1a32a2Baa2aC若a1a3,则a1a2D若a3>a1,则a4>a2解析:选B设an的首项为a1,公比为q,则a2a1q,a3a1q2.a1a3a1(1q2),又1q22q,当a1>0时,a1(1q2)2a1q,即a1a32a2;当a1<0时,a1(1q2)2a1q,即a1a32a2,故A不正确;aaa(1q4),又1q42q2且a>0,aa2a,故B正确;若a1a3,则q21.q±1.当q1时,a1a2;当q1时,a1a2,故C不正确;D项中,若q>0,则a3q>a1q,即a4>a2;若q<0,则a3q<a1q,此时a4<a2,故D不正确7(2013·辽宁高考)已知等比数列an是递增数列,Sn是an的前n项和若a1,a3是方程x25x40的两个根,则S6_.解析:a1,a3是方程x25x40的两个根且an是递增数列,故a34,a11,故公比q2,S663.答案:638(2014·杭州模拟)公差不为0的等差数列an的部分项ak1,ak2,ak3,构成等比数列,且k11,k22,k36,则k4_.解析:据题意等差数列的a1,a2,a6成等比数列,设等差数列的公差为d,则有(a1d)2a1(a15d),解得d3a1,故a24a1,a616a1ak464a1a13a1(n1),解得n22.答案:229(2013·江苏高考)在正项等比数列an中,a5,a6a73.则满足a1a2an>a1a2an的最大正整数n的值为_解析:设等比数列的首项为a1,公比为q>0,由得a1,q2.所以an2n6.a1a2an2n525,a1a2an2.由a1a2an>a1a2an,得2n525>2,由2n5>2,得n213n10<0,解得<n<,取n12,可以验证当n12时满足a1a2an>a1a2an,n13时不满足a1a2an>a1a2an,故n的最大值为12.来源:答案:1210数列an中,Sn1kan(k0,k1)(1)证明:数列an为等比数列;(2)求通项an;(3)当k1时,求和aaa.解:(1)证明:Sn1kan,Sn11kan1,得SnSn1kankan1(n2),(k1)ankan1,为常数,n2.an是公比为的等比数列(2)S1a11ka1,a1.an·n1.(3)an中a1,q,a是首项为2,公比为2的等比数列当k1时,等比数列a的首项为,公比为,aaa.11已知函数f(x)的图象过原点,且关于点(1,2)成中心对称(1)求函数f(x)的解析式;(2)若数列an满足a12,an1f(an),证明数列为等比数列,并求出数列an的通项公式解:(1)f(0)0,c0.f(x)的图象关于点(1,2)成中心对称,f(x)f(2x)4,解得b2.f(x).(2)an1f(an),当n2时,···2.又20,数列是首项为2,公比为2的等比数列,2n,an.来源:12已知数列an满足a11,an12an1(nN*)(1)求证:数列an1是等比数列,并写出数列an的通项公式;(2)若数列bn满足4b11·4b21·4b31··4bn1(an1)n,求数列bn的前n项和Sn.解:(1)证明:an12an1,an112(an1),又a11,a1120,an10,2,数列an1是首项为2,公比为2的等比数列an12n,可得an2n1.(2)4b11·4b21·4b31··4bn1(an1)n,4b1b2b3bnn2n2,2(b1b2b3bn)2nn2,即2(b1b2b3bn)n22n,Snb1b2b3bnn2n.冲击名校1设f(x)是定义在R上恒不为零的函数,且对任意的实数x,yR,都有f(x)·f(y)f(xy),若a1,anf(n)(nN*),则数列an的前n项和Sn的取值范围是_解析:由已知可得a1f(1),a2f(2)f(1)22,a3f(3)f(2)f(1)f(1)33,anf(n)f(1)nn,所以Sn23n1n.nN*,Sn<1.答案:来源:2数列an的前n项和记为Sn,a1t,点(Sn,an1)在直线y3x1上,nN*.(1)当实数t为何值时,数列an是等比数列;(2)在(1)的结论下,设bnlog4an1,cnanbn,Tn是数列cn的前n项和,求Tn.解:(1)点(Sn,an1)在直线y3x1上,an13Sn1,an3Sn11(n>1,且nN*)an1an3(SnSn1)3an,an14an(n>1,nN*),a23S113a113t1,当t1时,a24a1,数列an是等比数列(2)在(1)的结论下,an14an,an14n,bnlog4an1n,cnanbn4n1n,Tnc1c2cn(401)(412)(4n1n)(14424n1)(123n).高频滚动1已知等差数列an的前n项和为Sn,S440,Sn210,Sn4130,则n()A12 B14 C16 D18解析:选BSnSn4anan1an2an380,S4a1a2a3a440,所以4(a1an)120,a1an30,由Sn210,得n14.2已知数列an满足a11,且an2an12n(n2,nN*)(1)求证:数列是等差数列,并求出数列an的通项公式;(2)求数列an的前n项和Sn.解:(1)证明:因为an2an12n,所以1,即1,所以数列是等差数列,且公差d1,其首项,来源:所以(n1)×1n,解得an×2n(2n1)2n1.(2)Sn1×203×215×22(2n1)×2n1,2Sn1×213×225×23(2n3)×2n1(2n1)×2n,得Sn1×202×212×222×2n1(2n1)2n1(2n1)2n(32n)2n3.所以Sn(2n3)2n3.高考数学复习精品高考数学复习精品
展开阅读全文