【步步高】届高三数学大一轮复习 1.1集合的概念与运算课时检测 理 苏教版

上传人:gfy****yf 文档编号:40713678 上传时间:2021-11-17 格式:DOC 页数:4 大小:96.50KB
返回 下载 相关 举报
【步步高】届高三数学大一轮复习 1.1集合的概念与运算课时检测 理 苏教版_第1页
第1页 / 共4页
【步步高】届高三数学大一轮复习 1.1集合的概念与运算课时检测 理 苏教版_第2页
第2页 / 共4页
【步步高】届高三数学大一轮复习 1.1集合的概念与运算课时检测 理 苏教版_第3页
第3页 / 共4页
点击查看更多>>
资源描述
1.1 集合的概念与运算一、填空题1已知集合A3,2a,Ba,b,且AB2,则AB_.解析因为AB2,所以2a2,所以a1,又因为Ba,b,所以b2,所以AB1,2,3答案1,2,32.设全集U=x|x是平行四边形,A=x|x是菱形,B=x|x是矩形,则AB=_.解析AB为既是菱形又是矩形的四边形是正方形.答案 既是菱形又是矩形的四边形是正方形,故选B. 3已知集合M1,1,Nx|12x4,则MN_.解析Nx|0x2,MN1,1x|0x21答案14已知集合Ax|x22x30,Bx|x1,则AB_.解析 Ax|x22x3<0x|1<x<3,ABx|1<x<3答案 x|1<x<35已知M,N为集合I的非空真子集,且M,N不相等,若N(IM),则MN_.解析由条件可画韦恩图,得N是M的真子集,所以MNM.答案M6已知集合P4,2,0,2,4,Qx|1x3,则PQ_.解析PQ4,2,0,2,4x|1x30,2答案0,27已知集合Ax|x1,或x3,集合Bx|kxk1,kR,若(RA)B,则k的取值范围是_解析因为RAx|1x3,Bx|kxk1,kR,所以由(RA)B,得k11或k3,解得k0或k3.答案(,03,)8.设A=x|,B=x|ax-1=0,若则实数a组成的集合C为 . 解析 A=x|=3,5, B=,或B=3,或B=5. 当B=时,方程ax-1=0无解,所以a=0; 将x=3,或x=5代入方程ax-1=0得或.故C=. 答案 9.设全集U=Z,集合M=1,2,P=-2,-1,0,1,2,则等于_.解析 集合P=-2,-1,0,1,2,M=1,2,Z|,-2,-1,0.答案 -2,-1,0 10设Ma|a(2,0)m(0,1),mR和Nb|b(1,1)n(1,1),nR都是元素为向量的集合,则MN_.解析设a(x,y),则设b(x,y),则即xy2,将x2代入得y0,所以MN(2,0)答案(2,0)11.已知集合M0,1,2,3,4,N1,3,5,PMN,则P的子集共有_个解析 因为M,N,所以PMN,所以集合P的子集共有,4个答案 412已知集合Ax|x1,Bx|xa,且ABR,则实数a的取值范围是_解析(数形结合法)A(,1,Ba,),要使ABR,只需a1.答案(,1【点评】 本题采用数形结合法含参数的集合运算中,求参数的范围时,常常结合数轴来解决,同时注意“等号”的取舍13给定集合A,若对于任意a,bA,有abA,且abA,则称集合A为闭集合,给出如下四个结论:集合A4,2,0,2,4为闭集合;集合An|n3k,kZ为闭集合:若集合A1,A2为闭集合,则A1A2为闭集合:若集合A1,A2为闭集合,且A1R,A2R,则存在cR,使得c(A1A2)其中正确结论的序号是_解析4(4)8A,所以不正确,设n13k1,n23k2,k1,k2Z,则n1±n23(k1±k2),且k1k2Z,所以正确假设A1n|n2k,kZ,A2n|n3k,kZ,2A1,3A2,但是23A1A2,则A1A2不是闭集合,所以不正确,取中的集合A1,A2,可得正确答案二、解答题14A,By|yx2x1,xR(1)求A,B;(2)求AB,ARB.解析(1)由1,得10,即x(x1)0且x0,解得0x1,所以A(0,1由yx2x12,得B.(2)因为RB,所以AB,A(RB).15已知集合Ax|(x2)·(x3a1)<0,函数ylg的定义域为集合B.(1)若a2,求集合B;(2)若AB,求实数a的值解析 (1)当a2时,lglg.由>0,得4<x<5,故集合Bx|4<x<5(2)由题可知,Bx|2a<x<a21,若2<3a1,即a>时,Ax|2<x<3a1,又因为AB,所以无解;若23a1时,显然不合题意;若2>3a1,即a<时,Ax|3a1<x<2,又因为AB,所以解得a1.综上所述,a1.16设集合Ax|x24x0,xR,Bx|x22(a1)xa210,aR,xR,若BA,求实数a的取值范围思路分析本题体现了分类讨论思想,应对集合B中所含元素个数分类讨论解析A0,4,BA分以下三种情况:(1)当BA时,B0,4,由此知0和4是方程x22(a1)xa210的两个根,由根与系数之间的关系,得解得a1.(2)当BA时,B0或B4,并且4(a1)24(a21)0,解得a1,此时B0满足题意(3)当B时,4(a1)24(a21)0,解得a1.综上所述,所求实数a的取值范围是(,11【点评】 分类讨论思想是一种重要的数学思想方法,是历年来高考考查的重点,其基本思路是将一个复杂的数学问题分解或分割成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的思想策略.17已知集合Ax|x22x30,Bx|x22mxm240,xR,mR(1)若AB0,3,求实数m的值;(2)若ARB,求实数m的取值范围解析由已知得Ax|1x3,Bx|m2xm2(1)AB0,3,m2.(2)RBx|xm2或xm2,ARB,m23或m21,即m5或m3.所以实数m的取值范围是m|m5,或m318设集合A(x,y)(x2)2y2m2,x,yR,B(x,y)|2mxy2m1,x,yR,若AB,求实数m的取值范围解析AB,A,m2,m或m0.显然B.要使AB,只需圆(x2)2y2m2(m0)与xy2m或xy2m1有交点,即|m|或|m|,m2.又m或m0,m2.当m0时,(2,0)不在0xy1内综上所述,满足条件的m的取值范围为.4
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!