高三理科数学新课标二轮复习专题整合高频突破习题:专题八 选修4系列 专题能力训练22 Word版含答案

上传人:仙*** 文档编号:40257557 上传时间:2021-11-15 格式:DOC 页数:9 大小:3.03MB
返回 下载 相关 举报
高三理科数学新课标二轮复习专题整合高频突破习题:专题八 选修4系列 专题能力训练22 Word版含答案_第1页
第1页 / 共9页
高三理科数学新课标二轮复习专题整合高频突破习题:专题八 选修4系列 专题能力训练22 Word版含答案_第2页
第2页 / 共9页
高三理科数学新课标二轮复习专题整合高频突破习题:专题八 选修4系列 专题能力训练22 Word版含答案_第3页
第3页 / 共9页
点击查看更多>>
资源描述
高考数学精品复习资料 2019.5专题能力训练22坐标系与参数方程(选修44)能力突破训练1.在平面直角坐标系xOy中,圆C的参数方程为x=1+3cost,y=-2+3sint(t为参数).在极坐标系(与平面直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,直线l的方程为2sin-4=m(mR).(1)求圆C的普通方程及直线l的直角坐标方程;(2)设圆心C到直线l的距离等于2,求m的值.2.(20xx江苏,21C)在平面直角坐标系xOy中,已知直线l的参数方程为x=-8+t,y=t2(t为参数),曲线C的参数方程为x=2s2,y=22s(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.3.在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(2)直线l的参数方程是x=tcos,y=tsin(t为参数),l与C交于A,B两点,|AB|=10,求l的斜率.4.已知曲线C:x24+y29=1,直线l:x=2+t,y=2-2t(t为参数).(1)写出曲线C的参数方程,直线l的普通方程;(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.5.在极坐标系中,曲线C:=2acos (a>0),l:cos-3=32,C与l有且只有一个公共点.(1)求a;(2)O为极点,A,B为C上的两点,且AOB=3,求|OA|+|OB|的最大值.6.在直角坐标系xOy中,曲线C1的参数方程为x=acost,y=1+asint(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:=4cos .(1)说明C1是哪一种曲线,并将C1的方程化为极坐标方程;(2)直线C3的极坐标方程为=0,其中0满足tan 0=2,若曲线C1与C2的公共点都在C3上,求a.7.在极坐标系中,曲线C的极坐标方程为sin2-cos =0,点M1,2.以极点O为原点,以极轴为x轴正半轴建立直角坐标系.斜率为-1的直线l过点M,且与曲线C交于A,B两点.(1)求出曲线C的直角坐标方程和直线l的参数方程;(2)求点M到A,B两点的距离之积.思维提升训练8.在平面直角坐标系xOy中,直线l的参数方程为x=3+12t,y=32t(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,C的极坐标方程为=23sin .(1)写出C的直角坐标方程;(2)P为直线l上一动点,当点P到圆心C的距离最小时,求P的直角坐标.9.已知直线l的参数方程为x=1+2t,y=2t(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程是=sin1-sin2.(1)写出直线l的极坐标方程与曲线C的直角坐标方程;(2)若点P是曲线C上的动点,求点P到直线l的距离的最小值,并求出点P的坐标.10.在平面直角坐标系xOy中,曲线C1的参数方程为x=3cos,y=sin(为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为sin+4=42.(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)设P为曲线C1上的动点,求点P到C2上点的距离的最小值,并求此时点P的坐标.参考答案专题能力训练22坐标系与参数方程(选修44)能力突破训练1.解(1)消去参数t,得到圆C的普通方程为(x-1)2+(y+2)2=9.由2sin-4=m,得sin-cos-m=0.所以直线l的直角坐标方程为x-y+m=0.(2)依题意,圆心C到直线l的距离等于2,即|1-(-2)+m|2=2,解得m=-3±22.2.解直线l的普通方程为x-2y+8=0.因为点P在曲线C上,设P(2s2,22s),从而点P到直线l的距离d=|2s2-42s+8|12+(-2)2=2(s-2)2+45.当s=2时,dmin=455.因此当点P的坐标为(4,4)时,曲线C上点P到直线l的距离取到最小值455.3.解(1)由x=cos,y=sin可得圆C的极坐标方程2+12cos+11=0.(2)在(1)中建立的极坐标系中,直线l的极坐标方程为=(R).设A,B所对应的极径分别为1,2,将l的极坐标方程代入C的极坐标方程得2+12cos+11=0.于是1+2=-12cos,12=11.|AB|=|1-2|=(1+2)2-412=144cos2-44.由|AB|=10得cos2=38,tan=±153.所以l的斜率为153或-153.4.解(1)曲线C的参数方程为x=2cos,y=3sin(为参数).直线l的普通方程为2x+y-6=0.(2)曲线C上任意一点P(2cos,3sin)到l的距离为d=55|4cos+3sin-6|,则|PA|=dsin30°=255|5sin(+)-6|,其中为锐角,且tan=43.当sin(+)=-1时,|PA|取得最大值,最大值为2255.当sin(+)=1时,|PA|取得最小值,最小值为255.5.解(1)曲线C是以(a,0)为圆心,以a为半径的圆,l的直角坐标方程为x+3y-3=0.由直线l与圆C相切可得|a-3|2=a,解得a=1.(2)不妨设A的极角为,B的极角为+3,则|OA|+|OB|=2cos+2cos+3=3cos-3sin=23cos+6,当=-6时,|OA|+|OB|取得最大值23.6.解(1)消去参数t得到C1的普通方程x2+(y-1)2=a2,C1是以(0,1)为圆心,a为半径的圆.将x=cos,y=sin代入C1的普通方程中,得到C1的极坐标方程为2-2sin+1-a2=0.(2)曲线C1,C2的公共点的极坐标满足方程组2-2sin+1-a2=0,=4cos.若0,由方程组得16cos2-8sincos+1-a2=0,由已知tan=2,可得16cos2-8sincos=0,从而1-a2=0,解得a=-1(舍去),a=1.a=1时,极点也为C1,C2的公共点,在C3上,所以a=1.7.解(1)x=cos,y=sin,由sin2-cos=0,得2sin2=cos.所以y2=x即为曲线C的直角坐标方程.点M的直角坐标为(0,1),直线l的倾斜角为34,故直线l的参数方程为x=tcos34,y=1+tsin34(t为参数),即x=-22t,y=1+22t(t为参数).(2)把直线l的参数方程x=-22t,y=1+22t(t为参数)代入曲线C的方程得1+22t2=-22t,即t2+32t+2=0,=(32)2-4×2=10>0.设A,B对应的参数分别为t1,t2,则t1+t2=-32,t1·t2=2.又直线l经过点M,故由t的几何意义得点M到A,B两点的距离之积|MA|·|MB|=|t1|t2|=|t1·t2|=2.思维提升训练8.解(1)由=23sin,得2=23sin,从而有x2+y2=23y,所以x2+(y-3)2=3.(2)设P3+12t,32t,又C(0,3),则|PC|=3+12t2+32t-32=t2+12,故当t=0时,|PC|取得最小值,此时,点P的直角坐标为(3,0).9.解(1)由x=1+2t,y=2t,得x-y=1,故直线的极坐标方程为cos-sin=1,即2coscos4-sinsin4=1,即2cos+4=1.=sin1-sin2,=sincos2,cos2=sin,(cos)2=sin,即曲线C的直角坐标方程为y=x2.(2)设P(x0,y0),y0=x02,则P到直线l的距离d=|x0-y0-1|2=|x0-x02-1|2=-x0-122-342=x0-122+342.当x0=12时,dmin=328,此时P12,14.当点P的坐标为12,14时,P到直线l的距离最小,最小值为328.10.解(1)由曲线C1:x=3cos,y=sin(为参数),得x3=cos,y=sin(为参数),两式两边平方相加,得x32+y2=1,即曲线C1的普通方程为x23+y2=1.由曲线C2:sin+4=42,得22(sin+cos)=42,即sin+cos=8,所以x+y-8=0,即曲线C2的直角坐标方程为x+y-8=0.(2)由(1)知,椭圆C1与直线C2无公共点,椭圆上的点P(3cos,sin)到直线x+y-8=0的距离d=|3cos+sin-8|2=2sin+3-82,所以当sin+3=1时,d的最小值为32,此时点P的坐标为32,12.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 成人自考


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!