资源描述
高考数学精品复习资料 2019.5第22练 利用导数研究函数零点问题训练目标(1)利用导数处理与函数零点有关的题型;(2)解题步骤的规范训练训练题型(1)利用导数讨论零点的个数;(2)利用导数证明零点的唯一性;(3)根据零点个数借助导数求参数范围解题策略(1)注重数形结合;(2)借助零点存在性定理处理零点的存在性问题;结合单调性处理零点的唯一性问题;(3)注意参变量分离.1.设a1,函数f(x)(1x2)exa.(1)求f(x)的单调区间;(2)证明:f(x)在(,)上仅有一个零点2函数f(x)x3kx,其中实数k为常数(1)当k4时,求函数的单调区间;(2)若曲线yf(x)与直线yk只有一个交点,求实数k的取值范围3(20xx贵阳调研)已知函数f(x)(a0)(1)当a1时,求函数f(x)的极值;(2)若函数F(x)f(x)1没有零点,求实数a的取值范围4.设函数f(x)(xa)ln x,g(x). 已知曲线yf(x) 在点(1,f(1)处的切线与直线2xy0平行(1)求a的值;(2)是否存在自然数k,使得方程f(x)g(x)在(k,k1)内存在唯一的根?如果存在,求出k;如果不存在,请说明理由5已知函数f(x)(xa)ex,其中e是自然对数的底数,aR.(1)求函数f(x)的单调区间;(2)当a1,f(0)2aeaa2aaa0,f(0)f(a)0,f(x)在(0,a)上有一个零点,又f(x)在(,)上递增,f(x)在(0,a)上仅有一个零点,f(x)在(,)上仅有一个零点2解(1)因为f(x)x2k,当k4时,f(x)x24,令f(x)x240,所以x12,x22.f(x)、f(x)随x的变化情况如下表:x(,2)2(2,2)2(2,)f(x)00f(x)?极大值?极小值?所以f(x)的单调递增区间是(,2),(2,);单调递减区间是(2,2)(2)令g(x)f(x)k,由题意知,g(x)只有一个零点因为g(x)f(x)x2k.当k0时,g(x)x3,所以g(x)只有一个零点0.当k0对xR恒成立,所以g(x)单调递增,所以g(x)只有一个零点当k0时,令g(x)f(x)x2k0,解得x1或x2.g(x),g(x)随x的变化情况如下表:x(,)(,)(,)g(x)00g(x)?极大值?极小值?g(x)有且仅有一个零点等价于g()0,即kk0,解得0k.综上所述,k的取值范围是k.3解(1)当a1时,f(x),f(x).由f(x)0,得x2.当x变化时,f(x),f(x)的变化情况如下表:x(,2)2(2,)f(x)0f(x)?极小值?所以,函数f(x)的极小值为f(2),函数f(x)无极大值(2)F(x)f(x).当a0,解得ae2,所以此时e2a0.故实数a的取值范围为(e2,0)4解(1)由题意知,曲线yf(x)在点(1,f(1)处的切线斜率为2,所以f(1)2,又f(x)ln x1,所以a1.(2)当k1时,方程f(x)g(x)在(1,2)内存在唯一的根设h(x)f(x)g(x)(x1)ln x,当x(0,1时,h(x)110,所以存在x0(1,2),使得h(x0)0.因为h(x)ln x1,所以当x(1,2)时,h(x)10,当x2,)时,h(x)0,所以当x(1,)时,h(x)单调递增,所以当k1时,方程f(x)g(x)在(k,k1)内存在唯一的根5解(1)因为f(x)(xa)ex,xR,所以f(x)(xa1)ex.令f(x)0,得xa1.当x变化时,f(x)和f(x)的变化情况如下:x(,a1)a1(a1,)f(x)0f(x)?极小值?故f(x)的单调递减区间为(,a1),单调递增区间为(a1,)(2)结论:函数g(x)有且仅有一个零点理由如下:由g(x)f(xa)x20,得方程xexax2,显然x0为此方程的一个实数解,所以x0是函数g(x)的一个零点当x0时,方程可化简为exax.设函数F(x)exax,则F(x)exa1,令F(x)0,得xa.当x变化时,F(x)和F(x)的变化情况如下:x(,a)a(a,)F(x)0F(x)?极小值?即F(x)的单调递增区间为(a,),单调递减区间为(,a)所以F(x)的最小值F(x)minF(a)1a.因为a0,所以对于任意xR,F(x)0,因此方程exax无实数解所以当x0时,函数g(x)不存在零点综上,函数g(x)有且仅有一个零点
展开阅读全文