RFID技术发展与应用分析[共25页]

上传人:gfy****yf 文档编号:39630753 上传时间:2021-11-11 格式:DOC 页数:25 大小:591KB
返回 下载 相关 举报
RFID技术发展与应用分析[共25页]_第1页
第1页 / 共25页
RFID技术发展与应用分析[共25页]_第2页
第2页 / 共25页
RFID技术发展与应用分析[共25页]_第3页
第3页 / 共25页
点击查看更多>>
资源描述
中国安防行业网:RFID技术发展与应用分析资料整理:中国安防行业网目录1、多样RFID支付技术的比较与分析12、基于有源RFID的自动报站系统研究13、RFID技术在产品防伪追溯管理中的应用34、基于RFID技术的地震灾害报警系统设计55、RFID技术的发展与标准化情况56、RFID中间件软件在RFID系统中的功能和作用107、有源RFID定位系统的设计与实现158、RFID应用集成中间件技术研究与开发179、有源RFID系统中可靠通信的研究1910、基于阻抗匹配的种类及其在RFID系统中的应用研究22内容1、多样RFID支付技术的比较与分析RFID支付技术本身已经比较成熟,但如何与手机结合开展应用还处于探索阶段。目前存在多种RFID支付技术方案,主要有贴片卡、NFC、eNFC、SD卡、SIMpass、RF SIM等。 技术本身没有优劣势,但电信运营商在开展具体业务时,需要考虑如成本、与电信运营商的关联度、安全性、技术成熟度、用户使用习惯等诸多因素,下面我们就一些重要的方面对几种技术进行简单的比较, 贴片卡方式是最容易、成本最低的将手机结合RFID应用的方式,但也是生命力最弱的一种方式。主要是因为贴片卡方式对电信运营商来说关联性太弱,也很难起到黏着用户的目的,同时由于无法建立起与SIM/UIM卡的关联,无法提供空中充值、远程应用管理等功能。 NFC方式目前是发展最成熟的方案,特别是在日本,NTT DoCoMo采用的Felica技术就是NFC方式的一种改进技术。技术成熟、功能全面、有商用案例是其最大的优势,但由于NFC方式需要定制手机终端,SIM/UIM卡不能控制业务逻辑,对于电信运营商控制产业链十分不利,另外还存在技术壁垒。 eNFC方式是NFC方式的一个演进技术。eNFC方案中产业链利益偏向电信运营商,由SIM/UIM卡控制业务逻辑,但缺陷也很明显,手机终端和UIM卡都需要定制或改造,并且尚无任何商用或试点案例。 SD卡方式实现原理有些类似贴片卡方式,与电信运营商关联较弱,且需要进行终端定制或改造。 ass方案将应用信息和RFID模块都集成到SIM/UIM卡中,对电信运营商十分有利,用户也无需更换手机终端。但是,由于天线是从SIM/UIM中引出的,而不同手机终端SIM/UIM卡的放置位置不同,因此需要进行适配,同时天线比较容易折断、并不能适配所有手机也是问题。 RF SIM是一种新型的RFID产品,采用了2.4 GHz的通信频率。它将RFID模块、天线和应用信息都集成在SIM卡中,用户只需要更换SIM卡即可使用,从手机成本、业务控制角度来说是电信运营商的最佳选择。但由于原先的RFID行业应用较少用到2.4 GHz,银行、公交等主要行业的POS机都不支持,POS终端需要改造成本。另外,2.4 GHz的通信范围比较大,用户对RFID的安全担忧也是一个需要考虑的问题。 多样的技术给了我们多样的选择,电信运营商需要进行综合考虑,选择最适合的技术方案。2、基于有源RFID的自动报站系统研究引言 近年来,随着科学技术的快速发展,城市公交车的管理方式也有了很大的改观,逐渐由原来的人工售票、人工报站的方式向无人售票和语音报站的方向发展。虽然使用手动报站器替代人工报站有了很大的进步,但是需要驾驶员在行车中人工操作,所以经常出现错报、漏报的现象。而且这种驾驶员边驾驶边操作的行为,也给安全驾驶埋下隐患。自动报站系统的出现大大减轻驾驶员的工作量,加快了公交系统的现代化进程。目前少数发达国家(如美国、日本等)的部分城市公交系统已逐步使用GPS卫星定位系统进行定位报站,虽然这种系统功能强大,定位准确度高,系统稳定可靠,但其投资运行成本相对较为昂贵,公交企业难以承担其费用,尤其是一些中小城市更是无法承受,大大制约了其使用范围。 本文设计了一种利用RFID技术、MP3语音播放和单片机控制技术相结合,实现公交车站的自动识别与自动报站的方案。射频识别(Radio Frequency Identification,RFID)技术是近年迅速发展起来的一项新技术,是利用感应、电磁场或电磁波为传输手段,完成非接触式通信,由此获取相关数据的一种自动识别技术,即利用无线射频方式来进行非接触式的物体自动识别。相对于无源RFID,有源RFID具有作用距离远、发射功率可控制、发射频率可调、接收灵敏度高等特点,本系统的有源RFID部分由CC1100模块完成。在非特别需要的情况下,本系统无需驾驶员参与,避免因为驾驶员的疏忽而造成漏报、误报的现象发生,有利于提高行车的安全性。 1 系统的组成与主要实现功能 本系统由车载设备和站台设备两个部分组成,其中车载部分主要包括单片机控制单元、RF无线射频接收单元、语音播放单元、显示单元、键盘输入单元和电源供应单元等,站台设备包括单片机编码单元和RF发射单元。每一个公交站台设置一个具有唯一ID的RF发射器,采用间歇工作方式发射RFID信号,当公交车即将到达车站时,车载系统接收到站台信号并解码出该站台的ID号,由单片机控制自动播放对应本站台编号的报站语音;报站语音为MP3格式,并用SD存储卡作为存储载体,方便更新和修改。 2 系统硬件结构 为简化系统结构,方便系统的设计、调试和扩展其他功能,本系统采用模块化的设计方式。站台发射端的硬件结构框图如图1所示,主要包括RF发射模块(CC1100)、车站ID编码生成模块(STC89C58)。车载接收端的硬件结构框图如图2所示,主要包括RF接收模块(CC1100)、车站ID解码与控制模块(STC89C52)、语音播放模块(VS1003)、语音功率放大模块(TDA7297)、显示模块、电源模块等。21 单片机控制模块 发射与接收端的控制模块分别由单片机STC89C51和STC89C58构成,STC89C51系列单片机具有片内FLASH程序存储器、EEPROM存储器,且可以通过RS 232接口下载软件,方便系统软件的存储与更新。站台ID的编码生成由单片机STC89C51完成,使用STC89C51的P10P17端口作为站台ID编码输入,分别连接在拨码开关上,共有256(28)种不重复的编码。在需要更多的编码时,可用STC89C51的其他空闲端口进行扩充;使用单片机直接对车站进行ID编码,比使用一些专用编码芯片更加灵活方便,扩展性更好。车载设备的控制由单片机STC89C58组成,分别完成CC1100接收模块的初始化、VS1003语音模块的初始化、站台ID的解码及显示系统的控制等功能。本方案中,因为STC89C51系列单片机不带SPI接口,所以通过普通IO口模拟SPI接口实现与CC1100,VS1003的通信。 22 RF发射与接收模块 本系统的有源RFID由站台发射端与车载接收端两部分组成,射频发射与接收分别由两块CC1100模块完成。CC1100是美国德州仪器(Texas Instruments,简称TI)公司生产的一种高性能无线射频通信芯片,它是一种专为无线射频通信应用而设计的低功耗、低成本的单芯片UHF收发芯片。支持ASK,OOK,2-FSK,GF-SK和MSK等调制模式,工作频率可以通过软件设定为315 MHz,433 MHz,868 MHz和915 MHz的ISM(工业,科学和医学)和SRD(短距离设备)等频率波段,其数据传输率可软件编程控制,最高可达500 Kbs。CC1100具有灵敏度高、链接性能好的特点,所需的外部组件少,电路结构简单,工作稳定,可广泛应用于各种短距离无线通信领域。 23 语音播放模块VS1003 VS1003是由荷兰VLSI公司出品的一款单芯片的MP3WMAMIDI音频解码和ADPCM编码芯片,其拥有一个高性能低功耗的DSP处理器核心VS _DSP,5 KB的指令RAM,05 KB的数据RAM。VS1003的所有数据和控制命令均通过SPI总线接口实现,因此和单片机的接口连接比较简单,只需4根信号线,分别是:设备选择线、时钟信号线(SCLK)、串行数据输出线(MISO)、串行数据输入线(MOSI)。音频数据通过串行数据接口(SDI)传送,控制数据则通过串行控制接口(SCI)来传送。控制数据是通过读写不同的寄存器来实现对VS1003的控制。在本方案中,VS100 3作为一个微处理器的一个从机,通过串行SPI接口接收输入的比特流,输入的比特流被解码后,再经过数字音量控制器到达一个18位过采样-AD转换器。这样利用一块VS1003芯片与单片机STC89C58相配合,由STC89C58读取SD卡中的MP3音频文件,再通过SPI接口送至VS1003芯片播放。 24 音频功率放大模块 报站语音放大由音频功率放大集成块TDA7297完成,其工作电压范围为618 V,双通道输出功率可达(15+15)W,即使在嘈杂的环境中也能有足够大的输出功率。 此外还有电源模块和显示模块,电源模块负责系统的电源能量供应,分别为单片机、CC1100、VS1003等模块提供33 V的工作电压,为功放模块提供12 V的工作电压;显示模块作为人机对话的一个窗口,用以显示和标识车辆到站的提示信息。3 系统软件设计 本自动报站系统的软件也采用模块化设计,主要包括主程序、CC1100初始化程序、VS1003初始化程序、站台ID编码程序、MP3语音读取与播放程序、显示处理程序等。 31 站台发射端 系统上电后,单片机STC89C51首先对CC1100初始化,接着扫描P1端口的ID编码状态值,并在该值的前面加上前置识别码,后面加上结束标识码,然后通过CC1100调制并发射。 32 车载接收端 系统上电后,单片机STC89C58分别对CC1100,VS1003和显示单元进行初始化。当汽车即将到达车站(距离站台发射器约50 m)时,接收到站台发射的RF信号,系统分两次接收解码出该站台的ID编码号,通过比较两次的ID编码值,可有效排除外来干扰,提高系统抗干扰性能。只有两个值相等才判断确定为该站台的正确ID编码号,并与上次存储的ID号进行比较,如若相同,判为同一站台,返回重新检测与识别,不再重复报站;如果不同,则存储本次ID编码值并搜索与读取SD存储卡中相对应的MP3语音文件,然后输送到VS1003进行语音播放报站。4 结语 本文针对当前我国各城市公交车报站方式上的不足,利用无线射频识别技术,设计了一种基于RFID技术的公交车自动识别车站、自动报站的技术方案。这种基于RFID技术的公交车自动报站系统,实现了公交车的自动报站功能。在识别车站、自动报站的过程中,完全不需要驾驶员进行操作,减轻了驾驶员的负担,增加了车辆行驶的安全性。本系统具有报站准确率高、价格低廉、运行成本低、维护方便的优点,不失为一种实用的公交车智能装置,具有一定的推广应用价值。3、RFID技术在产品防伪追溯管理中的应用随着物联网技术的发展,基于RFID的物流防伪追溯应用崭露头角。传统的防伪主要采用激光全息、激光打标、特殊油墨、特制纸张以及电码防伪等技术,然而,这些技术或产品一出现很快就被复制,不能真正起到防伪的作用,一旦出现质量问题,也很难进行问题追溯。而RFID防伪追溯技术具有难以伪造、易于识别、信息反馈、密码唯一、密码保密、使用一次性等特点。RFID技术在物流防伪追溯的应用中,除了在防伪方面有先天的优势之外,还可以大幅提升企业的物流管理效率。现在仍有相当一部分企业的信息统计数据依赖于手工作业,客观上造成了物流供应链诸环节数据统计时间的滞后,造成统计数据在时序上的混乱,无法进行实时的整体的数据分析,从而无法给管理决策提供真实、可靠的依据。而RFID可以实时记录商品在生产、存储、运输、销售全生命周期中的各种信息,从而可以优化企业的物流管理,进而实现商品质量追溯等功能。利用RFID技术防伪追溯,与传统防伪技术相比,其优点在于:每个标签具有全球唯一的ID号码,号码直接写入芯片,无法修改、难以仿造;无机械磨损,防污损;阅读器具有不直接对最终用户开放的物理接口,保证其自身的安全性;除具有电子标签的密码保护外,数据部分可采用多种安全算法实现安全管理;阅读器与电子标签之间的通信需经过相互认证过程;实时记录商品全生命周期的各种信息。RFID应用于商品防伪追溯时,不仅可以记录产品的编码,还可以记录各种与产品相关的信息,如品种信息、生产信息、库存位置信息、配送信息、销售信息、销售区域等,为商品添加了一个唯一、完整、保密、可追溯的身份和属性标示符。由于RFID可以贯穿产品生命周期的多个环节,系统除了具备防伪追溯能力之外,还可以为企业提供物流可视化管理功能,有效提高企业的物流管理水平,为授权供应商、最终客户提供良好的服务,提升企业的服务水平。中兴通讯RFID研发中心经过对行业的深入分析研究,推出了“RFID产品防伪追踪管理系统”,采用先进的RFID自动识别技术,以RFID电子标签作为防伪追溯信息载体,是集成RFID技术、计算机网络技术、现代通信技术、数据库技术、软件工程技术于一体的大型信息系统。该系统可应用于高档酒类、烟草、药品、茶叶等商品的防伪追溯,也可用于高附加值的贵重物品,如珠宝等的防伪追溯。中兴通讯RFID物流防伪追溯系统构成如图1所示,系统由核心数据库、防伪追溯信息平台、生产管理系统、销售管理系统、决策支持系统构成。核心数据库:企业核心数据库内存储着企业内部生产、物流、销售的全部信息,是企业IT系统的数据中心。系统核心数据库采用磁盘冗余和双机热备技术,并提供定期数据备份、灾难恢复等功能,保证数据安全。防伪追溯信息平台:防伪追溯信息平台实现包括国家各级商品监管部门、海关、进口商、生产厂商、各级经销商、零售商、各类仓库和运输商等的全供应链的商品监管调度,以及商品全生命周期的追踪和溯源管理。考虑到平台实施的可操作性和运行管理的便利性,按职能和责任将平台划分为综合业务子平台、指挥决策子平台、辅助保障子平台和一个核心数据处理中心。三个子平台通过核心数据处理中心进行数据共享和交换,实现数据流的全程实时追踪和溯源。生产管理系统:生产管理系统主要对商品原料的采购、加工、包装、质检等商品生产过程所需的信息进行采集、查询,对商品的生产全过程进行监控和管理。这些信息作为产品追溯信息被存储在防伪追溯信息平台中,同时也可写入电子标签作为防伪追溯信息。生产管理系统还负责电子标签加密密钥的生成和发放,标签写入信息的设置,标签写入设备的配置、管理、故障检测等。销售管理系统:销售管理系统主要提供企业销售部门和经销商间的订单管理功能,包括网上提交订单、订单状态查询、订单内容修改、订单撤销等。经销商通过标签专用识读设备读取电子标签内防伪追溯信息内容,并与销售系统中的订单信息进行比对从而确认订单。决策支持系统:决策支持系统通过对企业核心数据库内存储的企业生产、销售、防伪追溯等相关信息进行分析和处理,为企业管理者提供决策数据支持,提高企业经营决策的科学性。物流防伪是物联网众多解决方案中的一项重要应用,中兴通讯推出的RFID物流防伪追溯系统对整个产品的生产、流通、销售等各个环节进行优化:一方面,可以即时获得准确的信息流,完善物流过程中的监控,减少物流过程中不必要的环节及损失,降低在供应链各个环节上的安全存货量和运营资本;另一方面,通过对最终销售实现监控,及时了解消费者的消费偏好,以帮助商家调整优化商品结构,进而获得更高的顾客满意度和忠诚度。4、基于RFID技术的地震灾害报警系统设计近年来,地震灾害频频发生,灾难面前,搜救遇难者是第一要务,而救灾现场的智能化管理更显得重要。蓬勃发展的物联网技术,面对地震,面对灾难又能做些什么?RFID可以预警地震物联网最主要的本质就是RFID标签技术,目前有英国科学家正在研究使用RFID和传感器来监控地震中的房屋。他们把已建成在希腊的原型称为"自治愈"房屋。这种房屋在墙中专门设计了缝隙空间,并且墙体中加入了可在强压下变为流体的材料。如果受到地震引起的压力,流体回流到缝隙中,不会对固体墙面产生影响。其结果是,房屋依旧存在,但可能会移动位置。如果建筑没有坍塌,通过RFID和传感器收集的数据会用来判别位置偏移量。此外,建筑中的RFID标签和传感器可以共同构建一套警报系统,来预警即将到来的地震。从东汉时期张衡发明的地动仪到现在英国科学家研究RFID和传感器,人类预测地震的手段和技术实力都在不断的进步中。相信在不久将来,人类将会准确预警地震的到来,避免地震带来的人员伤亡与损失。地震灾害报警为乘客预留18秒逃生地震预警技术:地震波包括纵波(P波)和横波(S波),纵波通过空气传播,速度快且破坏性小;横波在地下传播,速度慢但破坏力大。从纵波到横波,中间间隔几秒至几十秒,平均值为18秒。地震预警系统即通过检测纵波预警,在横波来临前的18秒里,争取时间逃生、应急。轨道交通作为城市交通系统中的重要一员,如何预防地震和减少地震伤害成为了一个崭新的课题。目前,已经有厂家为轨道交通安装了地震灾害报警系统,并投入实际应用。通过物联网,将地震预警技术与轻轨相关系统结合,进行地震信息采集、汇总、分析,加以研判和应对。它自动实现轨道交通地震灾害的实时检测,及时准确告警,为轨道交通运输部门应对地震灾害提供准确数据和各种决策。地震来临时,地震监测仪上放置的传感器,一旦检测到地震波纵波,传感器立即向控制中心输送信息,进行快速的信息过滤、分析、确认后,如地震强度达到预先设定的级别,报警系统立即启动。这时,行驶中的列车紧急刹车,避免在地震中侧翻;控制中心发出警报,通知乘客和列车指挥员;舱门自动打开,供乘客紧急疏散,寻找庇护场地;车舱电源自动切断,防止发生火灾等次生灾害18秒内可以做不少事,它预留了应急逃生时间,能避免更多伤亡和损失。除了地震,轨道交通灾害还包括塌方、火灾、水灾、异物等。随着技术的逐步成熟,物联网将会在轨道交通灾害预防中扮演着无可替代的角色。5、RFID技术的发展与标准化情况无线射频识别(RFID)技术是一种识别技术,与之对应的识别技术还有一维条码、二维条码、光学识别技术等。 一套典型的RFID系统由电子标签、读写器和信息处理系统如图1所示。当带有射频识别标签(以下简称标签)的物品经过特定的信息读取装置(以下简称读写器)时,标签被读写器激活并通过无线电波开始将标签中携带的信息传送到读写器以及计算机系统完成信息的自动采集工作。电子标签可以如身份证大小,由人携带并当作信用卡使用,也可以像商品包装上的条型码似地贴附在商品等物品上。RFID计算机系统则根据需求承担相应的信息控制和处理工作。 1 RFID的技术发展 RFID技术并不是全新的技术,其应用最早可以追溯到第二次世界大战时期英国空军基地的军事设施上。近年来随着微电子、计算机和网络技术的发展,RFID技术的应用范围和深度都得到了迅速地发展。美国在伊拉克战争中对RFID技术的成功应用,以及全球有影响的大企业计划未来几年里在零售商店和货栈开始使用RFID系统,使得该技术现在迅速成为全球瞩目的焦点,并被列为21世纪最有前途的重要产业和应用技术之一。 表1给出了RFID技术发展情况一览。值得注意的是目前RFID已经发展到一个非常关键的阶段,就是形成全球统一标准的阶段,大规模应用虽然还未形成,很多相关系统也还是试验或带有验证性质的,但是RFID走向大规模应用的发展趋势已经明朗。 从技术上看,RFID最本质的特性就是无线通信技术和识别技术,有很多种技术实现方法,也有很多种应用形态。但从技术发展趋势来看,目前所采用的RFID技术主要从两个技术领域演变而来:自动识别技术和非接触型智能卡技术。 以RFID技术为基础,添加不同的技术特征,会出现多种不同名称的扩展应用领域,如图2所示。 图2中的智能化程度主要包含:芯片的可重复读写技术、芯片和识读器之间的安全技术、高速率数据传输技术、在无源或低功耗情况下传输其他动态信息的技术等。而价格低主要取决于芯片的大小尺寸、天线封装成本等因素。可以看到,价格低廉的标签是RFID广泛应用于物流管理关键,而用于电子支付的RFID技术则需要考虑鉴权和重复记录存储,对价格则不是很敏感;标签的识别和无线传输同时也是传输环境参数的较好载体,这也是RFID延伸到是未来传感网络的技术基础;此外,RFID技术也可以应用于短距离无线通信领域,与蓝牙等技术一样成为家庭网络的候选技术。 就现阶段而言,价格低廉、传输距离适当、可广泛应用于物流管理的RFID技术是目前标准化组织和产业联盟的研究重点,也是国际标准化组织和产业联盟互相竞争的焦点。2 RFID标准化情况 与RFID技术和应用相关的国际标准化机构主要有:国际标准化组织(ISO)、国际电工委员会(IEC)、国际电信联盟(ITU)、世界邮联(UPU)。此外还有其他的区域性标准化机构,如CEN;国家标准化机构,如BSI、ANSI、DIN;产业联盟,如ATA、AIAG、EIA等;这些机构均在制订与RFID相关的区域、国家或产业联盟标准,并希望通过不同的渠道提升为国际标准。 与RFID技术有关的产业联盟主要是EPCglobal和泛在ID中心(Ubiquitous ID Center)。其中EPCglobal是由美国统一代码委员会(UCC)和欧洲物品编码(EAN)组织联合发起成立的一个独立的非盈利性机构,UCC和EAN分别是推广北美和欧洲条形编码的组织。EPCglobal目前以推广RFID电子标签的网络化应用为宗旨,继承了AutoIDcenter组织的统一行业内企业的技术标准制订工作,并成立公司(即EPCglobal Inc)统一研究标准并推动商业应用,此外还负责EPCgobal号码注册管理组织。 RFID系统主要由数据采集和后台数据库网络应用系统两大部分组成。目前已经发布或者是正在制订中的标准主要是与数据采集相关的,主要有电子标签与读写器之间的空中接口、读写器与计算机之间的数据交换协议、RFID电子标签与读写器的性能和一致性测试规范以及RFID电子标签的数据内容编码标准等。 国际标准化组织ISO和EPCglobal在RFID的空中接口方面形成了多个标准,如图3所示。现有的RFID技术工作在多个无线频率范围内,常见的工作频率有:低频125 kHz与134.2 kHz;高频13.56 MHz;超高频433 MHz、860 MHz930 MHz、2.45 GHz等。在相同的频率下也有多种RFID技术标准共存,比如13.56 MHz就有ISO14443 TypeA、TypeB、ISO15693、ISO18000-3等标准存在,不同的标准采用的无线调制方式、基带编码格式、传输协议和传输距离各有差异,不同标准的RFID电子标签和识读器无法互通。 .1ISO/IECRFID国际标准化状况 在ISO/IEC JTC31组的工作范围内,在ISO 18000系列标准的范畴下,对RFID技术及应用的研究相对比较完整1-6。目前很多RFID技术及应用标准仍在制订之中,尚未发布。此外,ISO/IEC SC17、TC122等工作组也已经发布了一些标准,这些标准相对比较成熟,在部分行业内已经开始使用。 根据ISO/IEC JTC31 RFID技术的标准化工作计划,ISO将RFID的国际标准分为空中接口标准、数据结构标准、一致性测试标准和应用标准4个方面。一致性测试标准主要针对的是电子标签和卡之间的空中接口和数据传输测试标准。此外,其他3类标准对应的逻辑架构结构如图4所示。 图5给出了ISO/IEC在RFID技术标准化领域的工作内容。在ISO发布的RFID空中接口标准中涉及到较多的基本专利,在ISO/IEC 18000系列标准的文本中已经有一些公司的专利声明。ISO组织对知识产权的基本政策是专利持有者将按照公平、合理、无歧视的原则进行许可。 EPC标准体系 EPCglobal是一个产业联盟,以推广RFID电子标签的网络化应用为宗旨,不但发布了EPC电子标签和读写器方面的技术标准,还推广RFID在物流管理领域的网络化管理和应用,此外还负责EPCgobal号码注册管理组织。可以简单地将EPCglobal的研究范围总结为:电子标签(含电子标签和识读器的技术特性)、EPC、目标命名业务(ONS)(类似于因特网的域名服务器(NDS)系统,使物流环节能够共享EPC产品的产地信息等)、描述物品信息的标准化语言(PML)。 EPCglobal的标准化结构框架如图6所示。 可以看到,EPCglobal体系的标准化工作为4个方面: 电子标签和读写器的物品编码信息承载的技术要求; EPC电子标签信息规范,即物品编码的规则; EPCglobal提供业务方面,分为物品编码分配管理和目标命名业务; 软件方面的标准,分为应用层事件(与物流管理相关的数据采集和刷新等)和EPC信息业务层面(与物品信息对应的信息描述)。 与ISO相比,EPCglobal标准在电子标签和读写器的空中接口技术要求上略有差异;在EPC电子标签信息规范方面要求只能接受EPCglobal承认的代码,在软件标准化方面进展比ISO快一些;同时制订了EPC物品编码分配管理规则以及目标命名业务的措施推广EPCglobal业务。 此外,EPC定义了电子标签的种类,按照电子标签实现的功能分为只读式、带附加功能的被动式、半主动式、宽带点到点通信主动式以及在可以和不同级别电子标签进行通信的无源标签等5类,如图7所示。 目前阶段在EPC联盟中重点推广的是只读的等级0(Class0)和Class1类电子标签或者是拥有少量附加功能的电子标签。到ClassIV和ClassV阶段可以看到,电子标签会朝着点到点的宽带通信以及电子标签之间的通信发展。 RFID中国标准化情况 中国在RFID技术与应用的标准化研究工作上有一定的基础,目前已从多个方面开展了相关标准的研究制订工作。制订了集成电路卡模块技术规范、建设事业IC卡应用技术等应用标准,并得到了广泛应用。在技术标准方面,依据ISO/IEC15693系列标准已经完成国家标准的起早工作,参照ISO/IEC18000系列标准制订国家标准的工作正在进行中。此外,中国RFID标准体系框架的研究工作也已基本完成。另外2007年4月底,信产部发布了关于发布800/900 MHz频段射频识别(RFID)技术应用试行规定的通知,根据信产部800/900 MHz频段射频识别(RFID)技术应用规定(试行)的规定,中国800/900 MHz RFID技术的试用频率为840845 MHz和920925 MHz,发射功率为2 W。 3 结束语 20世纪90年代以来,RFID技术得到了快速发展。经济发达国家和地区已经将其应用于很多领域,并积极推动相关技术与应用标准的国际化。近年来,中国已初步开展了RFID相关技术的研发及产业化工作,并在部分领域开始应用。当前RFID技术发展迅速,但尚未成熟,中国有必要抓住这一时机,集中开展RFID核心技术研发,制订符合中国国情的技术标准,促进具有竞争力的产业链形成,使中国在该领域占有一席之地。6、RFID中间件软件在RFID系统中的功能和作用一、前言RFID中间件就是在企业应用系统和RFID信息采集系统间数据流入和数据流出的软件,是连接R F l D信息采集系统和企业应用系统的纽带,使企业用户能够将采集的R F I D数据应用到业务处理中。R F I D中间件扮演R F I D标签和应用程序之间的中介角色,这样一来,即使存储RFID标签信息的数据库软件或后端发生变化,如应用程序增加、改由其他软件取代或者读写R F 1 D读写器种类增加等情况发生时,应用端不需修改也能处理,省去多对多连接的维护复杂性问题。二、RFID技术简介射频识别(Radio Frequency Identification。RFID)技术,是一种利用射频通信实现的非接触式自动识别技术。目前,利用EPC(Electronic Product Code,电子商品代码)、RFID通信技术,可实现全球物品跟踪与信息共享的物联网。这将在全球范围从根本上改变对产品生产、运输、仓储、销售各环节物品流动监控和动态协调的管理水平。根据预测,RFID标签技术将在未来25年逐渐开始大规模应用。1RFID系统的典型结构射频系统两个主要部分一一阅读器和射频卡之间通过无线方式通信,它们都有无线收发模块及天线(或感应线圈)。射频卡中有存储器,用来存储用户数据和系统数据等。射频卡可根据阅读器发出的指令对这些数据进行相应的实时读写操作。控制模块完成接受、译码及执行阅读器命令,控制读写数据,负责数据安全等功能。阅读器中控制模块往往有很强的处理功能,除了完成控制射频卡工作的任务外,还需要实现相互认证、数据加密解密、数据校验、出错报警及与计算机的通信等功能。2RFID系统的工作原理RFID技术的工作原理:射频卡进入磁场后,接收阅读器发出的射频信号,凭借感应电流所获得的能量发送出存储在芯片中产品信息(无源标签),或主动发送某一频率的信号(有源标签);阅读器读取信息并解码后,送至中央信息系统进行有关数据处理。3RFID网络框架结构无线射频识别网络的框架结构如图所示。标签数据经过中间件的分组、过滤等处理上报给应用系统;应用系统负责事件数据的持久化存储,以及标签绑定的业务信息的管理。网络系统由本地网络和全球互联网组成,是实现信息管理、信息流通的功能模块。EPC系统的信息网络系统是在全球互联网的基础上,通过RFID中间件、对象命名称解析服务(ONS)和EPC信息服务(EPC IS)来实现全球“实物互联” 。RFID中间件具有一系列特定属性的“程序模块”或“服务” ,并被用户集成以满足他们的特定需求。它是加工和处理来自读写器的所有信息和事件流的软件,是连接读写器和企业应用程序的纽带,主要任务是在将数据送往企业应用程序之前进行标签数据校对、读写器协调、数据传送、数据存储和任务管理。图1描述了RFIDe问件组件与其他应用程序的通讯。图1 RFID中间件及其应用程序的通讯三、RFID中间件技术及其优势1RFID中间件技术概述中间件是在一个分布式系统环境中处于操作系统和应用程序之间的软件。中间件作为一大类系统软件,与操作系统、数据库孤立系统并称“三套车” ,其重要性不言而喻。基本的RFID系统一般由三部分组成:标签、阅读器以及应用支撑软件。中间件是应用支撑软件的一个重要组成部分,是衔接硬件设备如标签、阅读器和企业应用软件如企业资源规划(ERP,Enterprise ResourcesPIanning)、客户关系管理(CRM,Custome r RelationshipManagement)等的桥梁。中间件的主要任务是对阅读器传来的与标签相关的数据进行过滤、汇总、计算、分组,减少从阅读器传往企业应用的大量原始数据、生成加入了语意解释的事件数据。可以说,中间件是RFID系统的“神经中枢”。2 RFID中间件的原理R F l D中间件是一种面向消息的中间件(M e s sag e一0 riented Middleware,MOM ),信息(Information)是以消息(Message)的形式,从一个程序传送到另一个或多个程序。信息可以以异步(Asynch ronous)的方式传送,所以传送者不必等待回应。面向消息的中间件包含的功能不仅是传递(Passing信息,还必须包括解译数据、安全性、数据广播、错误恢复、定位网络资源、找出符合成本的路径、消息与要求的优先次序以及延伸的除错工具等服务。RFID中间件位于RFID 系统和应用系统之间, 负责RFID 系统和应用系统之间的数据传递。解决RFID数据的可靠性、安全性及数据格式转换的问题。RFID中间件和RFID系统之间的连接采用RFID系统提供的API(应用程序接口)来实现。RFID卡中数据经过阅读器读取后,经过API程序传送给RFID中间件。RFID中间件对数据处理后,通过标准的接13和服务对外进行数据发布。3RFID中间件的特征一般来说,RFID中间件具有下列的特征:(1)独立于架构(Insulation lnf rast ructu re)。RFID中间件独立并介于RFID读写器与后端应用程序之间。并且能够与多个RFID读写器以及多个后端应用程序连接,以减轻架构与维护的复杂性。(2)数据流(Data Flow)。RFID的主要目的在于将实体对象转换为信息环境下的虚拟对象, 因此数据处理是RFID最重要的功能。RFID中间件具有数据的搜集、过滤、整合与传递等特性,以便将正确的对象信息传到企业后端的应用系统。(3)处理流(Process Flow)。RFID中间件采用程序逻辑及存储再转送(StoreandForward)的功能来提供顺序的消息流,具有数据流设计与管理的能力。(4)标准(Standard)。RFID是自动数据采样技术与辨识实体对象的应用。EPCglobal(全球物品编码中心)目前正在研究为各种产品的全球唯一识别号码提出通用标准,即EPC (产品电子编码)。EPC是在供应链系统中,以一串数字来识别一项特定的商品,通过无线射频辨识标签由RFID读写器读入后,传送到计算机或是应用系统中的过程称为对象命名服务(Object NameSe rvice,ONS)。对象命名服务系统会锁定计算机网络中的固定点抓取有关商品的消息。EPC存放在RFID标签中,被RFiD读写器读出后,即可提供追踪EPC所代表的物品名称及相关信息,并立即识别及分享供应链中的物品数据,有效地提供信息透明度。4RFID中间件的优点从RFID标签制造开始,到其信息被RFID阅读器捕获,再由RFID中间件进行事件过滤和汇总,然后由EPClS应用软件进行RFID事件的业务内容丰富,保存:JEPCIS(EPC信息服务)存储系统,供企业自身和其合作伙伴进行访问。(1)标准和规范在中间的各个环节,EPC global出台了相关标准和规范: RFID标签和RFID阅读器之间,定义了EPC标签数据规范和标签协议; RFID阅读器和RFID中间件之间,定义了读写器访问协议和管理接口: RFID中间件和EPCIS捕获应用之间,定义了RFID事件过滤和采集接口(ALE); EPCIS捕获应用和EPClS存储系统之间,定义EPCIS信息捕获接13; EPCIS存储系统和EPCIS信息访问系统之间,定义了EPCIS信息查询接口; 其它关于跨企业信息交互的规范和接口,譬Z1ONS接口等。一个典型的RFID应用基本上都会包含这些层面的软硬件设施,而RFID中间件作为沟通硬件系统和软件系统的桥梁,在RFID应用环境中尤为重要。(2)优越性RFID中间件扮演RFID标签和应用程序之间的中介角色,从应用程序端使用中间件所提供一组通用的应用程序接口(API),即能连到RFID读写器,读取RFID标签数据。RFID中间件接口定义了一个相对稳定的高层应用环境,不管底层的计算机硬件和系统软件怎样更新换代,只要将中间件升级更新,并保持中间件RFID采集系统的接口定义不变,应用软件几乎不需任何修改,从而保护了企业在应用软件开发和维护中的重大投资。同时,使用RFID中间件有助于减轻企业二次开发时的负担,使他们升级现有软件系统时显得得心应手, 同时能保证软件系统的相对稳定,及对软件系统的功能扩展等,简化了开发的复杂性等,所以商用的RFID中间件的出现正日益引起用户的关注。其优越性具体表现如下: 降低开发难度。企业使用RFID中间件,在做二次开发时,可以减轻开发人员的负担,使其可以不用关心复杂的RFID信息采集系统,可以集中精力于自己擅长的业务开发中。 缩短开发周期。基础软件的开发是一件耗时的工作,特别是像RFID方面的开发,有别于常见应用软件开发,不是单纯的软件技术就能解决所有问题, 它需要定的硬件、射频等基础支持。若使用成熟的RFID中间件,保守估计可缩短开发周期50一75。 规避开发风险。任何软件系统的开发都存在一定的风险,因此,选择成熟的RFID中间件产品,可以在一定程度上降低开发的风险。 节省开发费用。使用成熟的RFID中间件, 可以节省25一60的二次开发费用。 提高开发质量。成熟的中间件在接口方面都是清晰和规范的,规范化的模块可以有效地保证应用系统质量及减少新旧系统维护。总体来说,使用RIFD中间件带给用户的不只是开发的简单、开发周期的缩短,也减少了系统的维护、运行和管理的工作量,还减少了总体费用的投入。四、RFID中间件的功能和作用使用RFID中间件可以让用户更加方便和容易的应用RFID技术, 并使这项技术融入到各种各样的业务应用和工作流程当中。中间件其中一个功能就是通过为RFID设备增加一个软件适配层的方法将所有类型的RFID设备(包括目前使用的RFID设备,下一代RFID设备、传感器以及EPC阅读器)在平台上整合成为“即插即用”的模式。对于应用开发商而言,RFID中间件的重要功能在于产品所特有的强大事件处理和软件管理机制。事件处理引擎帮助开发者轻松地建立、部署和管理一个端到端的逻辑RFID处理过程,而该过程是完全独立于底层的具体设备型号和设备间信息交流协议的。因为在事件处理引擎中利用逻辑设备这一模式,使得RFID数据处理过程可以真正的脱离应用部署阶段所要面对的设备物理拓扑结构,因而大大降低了设计的复杂性,也不必关心这些设备的供应商和它们之间用的是什么通信协议了。RFID中间件还可以和诸如企业资源配置(ERP)系统,仓储管理系统(WMS) 以及其他一些专有业务系统很有效的配合在一起进行业务处理。这种良好的适应性使得应用该框架组建的RFID应用只需要进行非常少量的程序改动就可以和原有的业务系统软件配合得天衣无缝。RFID中间件基础框架的分层结构及其功能为:1设备服务供应商接口层该层是由帮助硬件供应商建立所谓“设备驱动”的可以任意扩展的API生成集合以及允许与系统环境无缝连接的特定接口组成的。为了更容易的发挥整合的效能,中间件通过RFID软件开发包(SDK)的形式囊括各种各样的设备通讯协议并且支持以往生产的所有身份识别设备和各类阅读器,具有良好的兼容性。一旦设备供应商采用了软件开发包编制设备驱动程序,网络上的任何一个射频识别设备就都可以被工具软件发现,配置和管理了。这些设备可以是RFID阅读器,打印机,甚至是既可以识别条码又可以识别RFID信号的多用途传感器。2运转引擎层这一层是通过消除未经处理的RFID数据中的噪声和失真信号等手段让RFID应用软件在复杂多样的业务处理过程中充分发挥杠杆作用。比如说。一般情况下设备很难检测出货盘上电子标签的移动方向,或者判明81111读入的数据是新数据还是已经存在了的旧数据。中间件中的运转引擎层可以通过由一系列基于业务规则的策略和可扩展的事件处理程序组成的强大事件处理机制,让应用程序能够将未经处理的RFID事件数据过滤、聚集和转换成为业务系统可以识别的信息。(1)运转引擎层的第一部分就是事件处理引擎。这一引擎的核心就是所谓的“事件处理管道” 。这一管道为RFID业务处理流程提供了一个电子标签读取事件的执行和处理机制,该机制就是把所有的阅读器进行逻辑分组,比如分为运送阅读器,接收阅读器,后台存储阅读器和前台存储阅读器等。通过使用RFID对象模型和七大软件开发工具,应用程序开发者可以构建一棵事件处理进程树从而使复杂的事件处理流程被刻画的一目了然。通过采用事件处理引擎,应用软件开发者就可以把精力集中于构造处理RFID 数据的业务逻辑而不是担心那些部署在系统各个环节的物理设备是否运转正常 这些问题已经在系统运行时被很好的解决了。与此同时,最终用户可以真正自由的获取通过处理RFID数据所带来的商业利益而不再终日与设备驱动程序缠斗在一起了。所有这一切为处理RFID业务信息提供了一条独一无二的“一次写入,随处使用” 的便捷途径。另一个事件处理引擎的关键组件就是事件处理器。事件处理器也是可扩展的程序构件,它允许应用程序开发商设定特殊的逻辑结构来处理和执行基于实际业务环境的分布式RFID事件。为了能设计出灵活性和扩展性好的组件,事件处理器的设计者使用了预先封装好的规范化电子标签处理逻辑,这些逻辑可以自动的依据事件处理执行策略(这些策略都是由业务规则决定的)来处理电子标签读取事件所获得的数据,这些处理通常包括筛选、修正、转换和报警等,这样一来所有电子标签上的数据就可以通过中间件的工作流服务产品融入原有应用系统的工作流程以及人工处理流程了。(2)运行引擎层的第二个主要组成部分就是设备管理套件。这一部分主要负责保障所有的设备在同一个运行环境中具有可管理性。设备管理套件可以为最终用户提供监控设备状态、察看和管理设备配置信息、安全访问设备数据、在整体架构中管理(增加、删除、修改名称)设备以及维护设备的连接稳定等服务。3RFID中间件的基础框架OMAPIs层RFID中间件框架提供了对象模型(OM)和应用程序开发接口集(APIs)来帮助应用程序开发商设计、部署和管理RFID解决方案。它包括了设计和部署“事件处理管道”所必要的工具,而“事件处理管道”是将未经处理的RFID事件数据过滤、聚集和转换成为业务系统可以识别的信息所必备的软件组件。通过使用对象模型和应用程序开发接口集,应用程序开发商可以创建各种各样的软件工具来管理RFID中间件基础框架。对象模型提供了很多非常有用的程序开发接口,它包括了设备管理、处理过程设计、应用部署、事件跟踪以及健壮性监测。这些应用程序接口不但对快速设计和部署一个端到端RFID处理软件大有裨益,而且可以使应用程序在整个应用软件生命周期得到更有效的管理。4设计工具和适配器层开发者在开发不同类型的业务处理软件的时候,可以从RFID中间件的基础框架的设计工具和适配器层获得一组对开发调试很有帮助的软件工具。这些工具中的设计器可以为创建一个RFID业务处理过程提供简单、直观的设计模式。“适配器”可以帮助整合服务器软件和业务流程应用软件的软件实体。适配器使得若干个通过RFID信息传递来完成业务协作的应用软件形成一个有机的整体。通过使用这些工具,微软的合作伙伴可以开发出各种各样具有广泛应用前景的应用程序和业务解决方案。因为通过使用RFID技术可以使整个物流变得一目了然。因而系统集成商和应用程序开发商可以在众多需要使用RFID技术的领域创建客户所需要的业务应用软件,这些领域包括资产管理,仓储管理。订单管理,运输管理等。五、结语尽管近几年很多行业、很多领域对RFID技术的需求有了惊人的增长,但是面临诸如难以配置和管理互不兼容的各种电子标签设备,难以在短时间内开发出实用可靠的应用系统,难以将电子标签应用程序与后台业务系统实现整合等实际困难。该项技术的潜能还远远没有被激发出来。要发挥RFID所具有的巨大潜力。必须研发出一系列的软件工具和完整的基础架构,才能让合作伙伴和最终用户开发出可以用来改进业务处理流程的应用解决方案,例如仓储管理和货物跟踪系统等等。RFID中间件的开发和成熟就能为物流信息管理平台建立了一个发现、管理电子标签设备并使之有效通讯的统一渠道,并为RFID应用与原有业务系统快速整合提供了一个规范的业务规则定制模型。RFID中间件通过建立丰富的、可升级的事件处理软件架构把未经处理的电子标签数据转化成具有实际意义的业务信息,最终将BRFID从边缘技术带入主流技术行列。并能让合作伙伴和最终用户更简单、快捷的开发出具有实用性,可扩展性和灵活性的RFID应用系统,为客户带来更大的利润。7、有源RFID定位系统的设计与实现定位系统是指在有限的区域内,如企业内部、校园、港口、仓库等,对财产和人员进行定位和跟踪。随着数据业务和多媒体业务的快速增加,人们对定位与导航的需求日益增大,已成为一个新兴产业并成为21世纪最热门的研究领域之一。目前,常用的定位技术包括红外线、超声波、GPS、WiPi等,但这些技术存在定位范围小、抗干扰能力差、定位精度低等缺陷。本文针对这些不足,设计并实现了有源RFID定位系统,该系统很好驷弥补了这些缺陷,适用于更多的场合。 1、定位技术分析 红外线定位技术只适合于短距离传播,且容易被荧光灯或者房间内的灯光干扰,所以该定位技术在定位范围和定位精确上有很大的局限性。 超声波传播定位技术虽然距离较远,但是受多径效应和非视距传播影响大,因此该定位技术对环境要求苛刻,且不适用于室内环境定位。 GPS定位技术是目前应用最为广泛的室外定位技术,它是世纪70年代初美国用于军事目的开发的卫星导航定位系统,主要利用几颗卫星的测量数据计算移动用户位置,覆盖范围大,但是定位信号到达地面时较弱,不能穿透建筑物,因此该定位技术只适用于室外不适合室内定位。 WiPi定位技术应用于小范围的室内或室外定位,成本较低。但无论是用于室内还是室外定位,Wi Fi收发器都只能覆盖半径在90 m以内的区域,而且很容易受到其他信号的干扰,从而影响其精度,定位器的能耗也较高。 在分析了现有技术不足之后,在此基础上提出了以RFID技术为核心的定位技术。RFID技术同现有定位技术相比,不但具有成本上的优势,而且RFID定位技术对环境的要求和受到环境的影响都很小,且定位精度较高,传输范围大,同时还能从定位目标中读取有关该对象的大量信息。 2、系统构成 本文设计的有源RFID定位系统由阅读器、标签、通信网络和后台服务器四个部分构成。各个阅读器内部存储了自身的位置信息,并能通过无线射频的方式发送给进人该区域的标签。标签与阅读器之间通过射频通信可以测量出无线电传输的伪距,并据此计算出自身位置信息,然后上报至阅读器。通信网络则可以将阅读器收到的信息传输至后台服务器,同时后台服务器还可以通过该网络控制各个阅读器。系统安装完成后,标签能够通过无线射频方式完成自身位置的确定,并且通过通信网络上传到后台服务器上。后台服务器收集标签信息,并提供标签位置的网络服务。 3、硬件结构 本系统的标签和阅读器具有相同的硬件结构,系统设计分为以下部分:主控制器、无线射频收发及测距模块、天线、供电系统。系统原理框图如图2所示。 为适应高速数据处理和网络通信的需要,系统以Atmel公司的Atmega64为主控芯片。ATmega64单片机采用Harbard结构,具有单周期的RISC指令系统,内部具有硬件乘法电路,数据处理速度快;I0端口可直接驱动较大电流负载;具有读写及地址锁存允许控制引脚,便于扩展和使用外部接口和外部存储空间;支持在线编程(ISP)及在线应用编程(I
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!