高中数学 第二章 平面向量 2.5 平面向量应用举例 2.5.1 平面几何中的向量方法 2.5.2 向量在物理中的应用举例学案 新人教A版必修4

上传人:仙*** 文档编号:39076495 上传时间:2021-11-09 格式:DOC 页数:8 大小:118.50KB
返回 下载 相关 举报
高中数学 第二章 平面向量 2.5 平面向量应用举例 2.5.1 平面几何中的向量方法 2.5.2 向量在物理中的应用举例学案 新人教A版必修4_第1页
第1页 / 共8页
高中数学 第二章 平面向量 2.5 平面向量应用举例 2.5.1 平面几何中的向量方法 2.5.2 向量在物理中的应用举例学案 新人教A版必修4_第2页
第2页 / 共8页
高中数学 第二章 平面向量 2.5 平面向量应用举例 2.5.1 平面几何中的向量方法 2.5.2 向量在物理中的应用举例学案 新人教A版必修4_第3页
第3页 / 共8页
点击查看更多>>
资源描述
2.5平面向量应用举例2.5.1平面几何中的向量方法2.5.2向量在物理中的应用举例学习目标:1.掌握用向量方法解决简单的几何问题、力学问题等一些实际问题(重点)2.体会向量是一种处理几何问题、物理问题的重要工具(重点)3.培养运用向量知识解决实际问题和物理问题的能力(难点)自 主 预 习探 新 知1用向量方法解决平面几何问题的“三步曲”:(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3)把运算结果“翻译”成几何关系2向量在物理中的应用:(1)物理问题中常见的向量有力,速度,加速度,位移等(2)向量的加减法运算体现在力,速度,加速度,位移的合成与分解(3)动量mv是向量的数乘运算(4)功是力F与所产生的位移s的数量积基础自测1思考辨析(1)若ABC是直角三角形,则有0.()(2)若,则直线AB与CD平行()(3)用力F推动一物体水平运动s m,则力F对物体所做的功为|F|s|.()解析(1)错误因为ABC为直角三角形,B并不一定是直角,有可能是A或C为直角(2)错误向量时,直线ABCD或AB与CD重合(3)错误力F对物体所做的功为Fs.答案(1)(2)(3)2已知一个物体在大小为6 N的力F的作用下产生的位移s的大小为100 m,且F与s的夹角为60,则力F所做的功W_J.300WFs6100cos 60300(J)3设M是线段BC的中点,点A在直线BC外,|16,|,则|_.2|,0,ABC是直角三角形,BC为斜边,|42.合 作 探 究攻 重 难向量在平面几何中的应用(1)已知非零向量与满足0且,则ABC的形状是()A三边均不相等的三角形B直角三角形C等腰三角形D等边三角形(2)已知四边形ABCD是边长为6的正方形,E为AB的中点,点F在BC上,且BFFC21,AF与EC相交于点P,求四边形APCD的面积思路探究(1)先由平行四边形法则分析的几何意义,由数量积为0推出垂直关系,再由求BAC,最后判断ABC的形状(2)先建系设点P坐标,再根据A,P,F和C,P,E分别共线求点P坐标,最后求四边形APCD的面积(1)C(1)由0,得A的平分线垂直于BC,所以ABAC,设,的夹角为,而cos ,又0,所以BAC,故ABC为等腰三角形(2)以A为坐标原点,AB为x轴AD为y轴建立直角坐标系,如图所示,A(0,0),B(6,0),C(6,6),D(0,6),F(6,4),E(3,0),设P(x,y),(x,y),(6,4),(x3,y),(3,6)由点A,P,F和点C,P,E分别共线,得S四边形APCDS正方形ABCDSAEPSCEB363336.母题探究:1.将本例1(1)的条件改为()(2)0,试判断ABC的形状解()(2)0,()()0,()0,()()0,0,即|2|20,所以|,ABC是等腰三角形2将本例1(2)的条件“BFFC21”改为“BFFC11”,求证:AFDE.证明建立如图所示的平面直角坐标系,则A(0,0),B(6,0),C(6,6),D(0,6),则中点E(3,0),F(6,3),(6,3),(3,6),633(6)0,AFDE.规律方法(1)向量法证明平面几何中ABCD的方法:法一:选择一组向量作基底;用基底表示和;证明的值为0;给出几何结论ABCD.法二:先求,的坐标,(x1,y1),(x2,y2),再计算的值为0,从而得到几何结论ABCD.(2)用向量法证明平面几何中ABCD的方法:法一:选择一组向量作基底;用基底表示和);寻找实数,使,即;给出几何结论ABCD.法二:先求,的坐标,(x1,y1),(x2,y2).利用向量共线的坐标关系x1y2x2y10得到,再给出几何结论ABCD.,以上两种方法,都是建立在A,B,C,D中任意三点都不共线的基础上,才有得到ABCD.向量在解析几何中的应用已知点A(1,0),直线l:y2x6,点R是直线l上的一点,若2,求点P的轨迹方程. 【导学号:84352265】思路探究解设P(x,y),R(x0,y0),则(1,0)(x0,y0)(1x0,y0),(x,y)(1,0)(x1,y)由2,得又点R在直线l:y2x6上,y02x06,由得x032x,代入得62(32x)2y,整理得y2x,即为点P的轨迹方程规律方法用向量方法解决解析几何问题的步骤:一是把解析几何问题中的相关量用向量表示;二是转化为向量模型,通过向量运算解决问题;三是将结果还原为解析几何问题.跟踪训练1已知ABC的三个顶点A(0,4),B(4,0),C(6,2),点D,E,F分别为边BC,CA,AB的中点(1)求直线DE的方程;(2)求AB边上的高线CH所在直线的方程解(1)设M(x,y)是直线DE上任意一点,则,因为点D,E分别为边BC,CA的中点,所以点D,E的坐标分别为D(1,1),E(3,1),(x1,y1),(2,2),所以(2)(x1)(2)(y1)0,即xy20为直线DE的方程(2)设点N(x,y)是CH所在直线上任意一点,则,所以0,又(x6,y2),(4,4),所以4(x6)4(y2)0,即xy40为所求直线CH的方程平面向量在物理中的应用探究问题1向量的数量积与功有什么联系?提示:物理上力作功的实质是力在物体前进方向上的分力与物体位移距离的乘积,它的实质是向量的数量积2用向量方法解决物理问题的一般步骤是什么?提示:用向量方法解决物理学中的相关问题,一般来说分为四个步骤:问题转化,即把物理问题转化为数学问题;建立模型,即建立以向量为载体的数学模型;求解参数,即求向量的模、夹角、数量积等;回答问题,即把所得的数学结论回归到物理问题中(1)一物体在力F1(3,4),F2(2,5),F3(3,1)的共同作用下从点A(1,1)移动到点B(0,5)在这个过程中三个力的合力所做的功等于_(2)设作用于同一点的三个力F1,F2,F3处于平衡状态,若|F1|1,|F2|2,且F1与F2的夹角为,如图251所示图251求F3的大小求F2与F3的夹角. 【导学号:84352266】思路探究(1)(2)(1)40因为F1(3,4),F2(2,5),F3(3,1),所以合力FF1F2F3(8,8),(1,4),则F188440,即三个力的合力所做的功为40.(2)由题意|F3|F1F2|,因为|F1|1,|F2|2,且F1与F2的夹角为,所以|F3|F1F2|.设F2与F3的夹角为,因为F3(F1F2),所以F3F2F1F2F2F2,所以2cos 124,所以cos ,所以.规律方法向量在物理中的应用:(1)求力向量,速度向量常用的方法:一般是向量几何化,借助于向量求和的平行四边形法则求解.(2)用向量方法解决物理问题的步骤:把物理问题中的相关量用向量表示;转化为向量问题的模型,通过向量运算使问题解决;结果还原为物理问题.跟踪训练2在静水中划船速度的大小是每分钟40 m,水流速度的大小是每分钟20 m,如果一小船从岸边O处出发,沿着垂直于水流的航线到达对岸,则小船的行进方向应指向哪里?解如图所示,设向量的长度和方向表示水流速度的大小和方向,向量的长度和方向表示船在静水中速度的大小和方向,以,为邻边作平行四边形OACB,连接OC.依题意OCOA,BCOA20,OB40,BOC30.故船应向上游(左)与河岸夹角为60的方向行进当 堂 达 标固 双 基1过点M(2,3),且垂直于向量u(2,1)的直线方程为()A2xy70B2xy70Cx2y40Dx2y40A设P(x,y)是所求直线上任一点,则u.又(x2,y3),所以2(x2)(y3)0,即2xy70.2已知点A(2,3),B(2,6),C(6,6),D(10,3),则以ABCD为顶点的四边形是() 【导学号:84352267】A梯形B邻边不相等的平行四边形C菱形D两组对边均不平行的四边形B因为(8,0),(8,0),所以,因为(4,3),所以|5,而|8,故为邻边不相等的平行四边形3已知作用在点A的三个力f1(3,4),f2(2,5),f3(3,1),且A(1,1),则合力ff1f2f3的终点坐标为()A(9,1) B(1,9)C(9,0)D(0,9)Aff1f2f3(3,4)(2,5)(3,1)(8,0),设终点为B(x,y),则(x1,y1)(8,0),所以所以所以终点坐标为(9,1)4坐标平面内一只小蚂蚁以速度v(1,2)从点A(4,6)处移动到点B(7,12)处,其所用时间长短为_3设所用时间长短为t,则tv,即(3,6)t(1,2),所以t3.5已知ABC是直角三角形,CACB,D是CB的中点,E是AB上的一点,且AE2EB.求证:ADCE. 【导学号:84352268】证明以C为原点,CA所在直线为x轴,CB所在直线为y轴,建立平面直角坐标系(略)设ACa,则A(a,0),B(0,a),D,C(0,0),E.因为,所以aaa0,所以,即ADCE.6EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F375
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 成人自考


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!