资源描述
1 引言1.1 DDS的简单介绍DDS同 DSP(数字信号处理)一样,是一项关键的数字化技术。DDS是直接数字式频率合成器(Direct Digital Synthesizer)的英文缩写。与传统的频率合成器相比,DDS具有低成本、低功耗、高分辨率和快速转换时间等优点,广泛使用在电信与电子仪器领域,是实现设备全数字化的一个关键技术。现代电子测量工作队波形发生器的性能提出了更高的要求,如输出波形质量更好、频率宽带更宽、频率更稳定、准确度及 分辨率更高、频率转换速度且输出波形相位连续等。DDS芯片中主要包括频率控制寄存器、高速相位累加器和正弦计算器三个部分。频率控制寄存器可以串行或并行的方式装载并寄存用户输入的频率控制码;而相位累加器根据频率控制码在每个时钟周期内进行相位累加,得到一个相位值;正弦计算器则对该相位值计算数字化正弦波幅度(芯片一般通过查表得到)。DDS芯片输出的一般是数字化的正弦波,因此还需经过高速D/A转换器和低通滤波器才能得到一个可用的模拟频率信号。1.2 DDS的发展及其优点DDS是全数字化技术、其幅度、相位、频率均可实现程控,并可通过更换波形数据灵活实现任意波形,此外,DDS易于单片集成,体积小,价格低,功耗小,因此,DDS技术近年来得到了飞速发展,其应用也越来越广泛。在各行各业的测试应用中,信号源扮演着极为重要的作用。但信号源具有许多不同的类型,不同类型的信号源在功能和特性上各不相同,分别适用于许多不同的应用。目前,最常见的信号源类型包括任意波形发生器,函数发生器,RF信号源,以及基本的模拟输出模块。信号源中采用DDS技术在当前的测试测量行业已经逐渐称为一种主流的做法。 DDS有如下优点:1.频率分辨率高,输出频点多,可达2的N次方个频点(N为相位累加器位数); 2.频率切换速度快,可达us量级; 3.频率切换时相位连续; 4.可以输出宽带正交信号; 5.输出相位噪声低,对参考频率源的相位噪声有改善作用;6.可以产生任意波形; 7.全数字化实现,便于集成,体积小,重量轻。1.3本文的主要内容 本文主要是运用DDS技术产生一个正弦发生电路的设计,它是一种全数字频率合成技术,它完全没有振荡元件和锁相环,而是用一连串数据流经过数模转换器产生出一个预先设定的模拟信号(正弦信号)。它将先进的数字信号处理理论与方法引入信号合成领域,实现了合成信号的频率转换速度与频率准确度之间的统一。 1.3.1 DDS的主要芯片介绍 如表1-1所示,介绍由AD公司生产的几款DDS芯片的性能指标。本设计中采用的DDS芯片是AD9850。AD9850是AD公司生产的最高时钟为125MHz的直接频率合成器,主要由可编程DDS系统、高性能模数变换器(DAC)和高速比较器3部分构成。能实现全数字编程控制的频率合成,并具有时钟产生功能。表1-1DDS的主要芯片介绍2 DDS技术产生信号波形的原理2.1 DDS的基本结构及基本工作原理直接数字频率合成器(Direct Digital Synthesizer)是一种把一系列数字量形式的信号通过DAC转换成模拟量形式的信号合成技术。目前使用最广泛的一种DDS方式是利用高速存储器作查寻表,然后通过高速DAC产生已经用数字形式存入的正弦波。一个直接数字频率合成器由频率控制字、相位累加器、波形存储ROM(正弦查询表)、D/A转换器和低通滤波器(LPF)构成。参考时钟为高稳定度的晶体振荡器,其输出用于同步DDS各组成部分的工作。DDS的原理框图如图2-1所示:图2-1 DDS原理框图DDS系统的核心是相位累加器,它由一个加法器与一个N位相位寄存器构成。每来一个时钟脉冲,加法器将频率控制数据与累加寄存器输出的累加相位数据相加,把相加后的结果送至累加寄存器的数据输入端。累加寄存器将加法器在上一个时钟作用后所产生的新相位数据反馈到加法器的输入端,以使加法器在下一个时钟的作用下继续与频率控制数据相加。这样,相位累加器在参考时钟的作用下,进行线性相位累加,当相位累加器累加满量时就会产生一次溢出,完成一个周期性的动作,这个周期就是DDS合成信号的一个频率周期,累加器的溢出频率就是输出的信号频率。正弦查询表是一个可编程只读存储器,存储的是以相位为地址的一个周期正弦信号的采样编码值,包含一个周期正弦波的数字幅度信息,每个地址对应与正弦波中0o-360o范围的一个相位点。将相位寄存器的输出与相位控制字相加得到的数据作为一个地址对正弦查询表进行寻址,查询表把输入的地址相位信息映射成正弦波幅度信号,驱动DAC,输出模拟信号,低通滤波器平滑并滤除不需要的取样分量,以便输出频谱纯净的正弦波信号。对于计数容量为2N的相位累加器和具有M个相位取样的正弦波波形存储器,若频率控制字为,输出信号频率为,参考时钟频率为,则DDS系统输出信号的频率为。2.1.1 频率控制字的作用被称为频率控制字,也叫相位增量。DDS方程为:,为输出信号频率, 为参考时钟频率。当=1时,DDS输出最低频率(也即频率分辨率),为,而DDS的最大输出频率由奈奎斯特(Nyquist)采样定理决定,即,也就是说的最大值为。因此,只要足够大,DDS可以得到很细的频率间隔。要改变DDS的输出频率,只要改变控制字即可。2.1.2累加器 相位累加器由位加法器与位寄存器级联构成。每来一个时钟脉冲 ,加法器将频率控制字与寄存器输出的累加相位数据相加,再把相加后的结果送至寄存器的数据输入端。寄存器将加法器在上一个时钟作用下继续与频率控制字进行相加。这样,相位累加器在时钟的作用下,进行相位累加。当相位累加器累加满时就会产生一次溢出,完成一个周期性的动作。2.2.3 控制相位的加法器通过改变相位控制字可以控制输出信号的相位参数。令相位加法器的字长为,当相位控制字由0跃变到(0)时,波形存储器的输入为相位累加器的输出与相位控制字之和,因而其输出的幅度编码相位会增加,从而使最后输出的信号产生相移。2.2.4 控制波形的加法器通过改变波形控制字W可以控制输出信号的波形。由于波形存储器中的不同波形是分块存储的,所以当波形控制字改变时,波形存储器的输入为改变相位后的地址与波形控制字W(波形地址)之和,从而使最后输出的信号产和相移。2.2.6 D/A转换器D/A转换器的作用是把合成的正弦波数字量转换成模拟量。正弦幅度量化序列经D/A转换后变成了包络为正弦波的阶梯波。需要注意的是,频率合成器对D/A转换器的分辨率有一定的要求,D/A转换器的分辨率越高,合成的正弦波台阶数就越多,输出的波形的精度也就越高。2.2.7 低通滤波器对D/A输出的阶梯波进行频谱分析,可知输出的阶梯波中除主频外,还存在分布在,等等的两边处的非谐波分量。因此,为了取出主频,必须在D/A转换器的输出端接入截止频率为的低通滤波器。2.2 DDS的数学原理设有一频率为的余弦信号:现在以采样频率对进行采样,得到的离散序列为: 其中为采样周期。对应的相位序列为 从上式可以看出相位序列呈线性,即相邻的样值之间的相位增量是一个常数,而且这个常数仅与信号的频率有关,相位增量为:因为信号频率与采样频率之间有以下关系: 其中与为两个正整数,所以相位的增量也可以完成:由上式可知,若将的相位均匀的分为等份,那么频率为的余弦信号以频率采样后,它的量化序列的样品之间的量化相位增量为一个不变值。根据上述原理可以构造一个不变量为量化相位增量的量化序列: 然后完成从到另一个序列的映射,由构造序列: 公式(21)公式(2-1)是连续信号经采样频率为采样后的离散时间序列,根据采样定理,当时,经过低通滤波器平滑后,可唯一恢复出。 可见,通过上述变换不变量将唯一的确定一个单频率模拟余弦信号: 该信号的频率为: 公式(22)公式(22)就是直接数字频率合成(DDS)的方程式,在实际的DDS中,一般取,于是DDS方程就可以写成: 公式(23)根据公式(23)可知,要得到不同的频率只要通过改变的具体数值就可以了,而且还可以得到DDS的最小频率分辨率(最小频率间隔)为当时的输出频率:可见当参考频率始终一定是,其分辨率由相位累加器的位数决定,若取,则,即分辨率可以达到,这也是最低的合成频率,输出频率的高精度DDS的一大优点。由奈奎斯特准则可知,允许输出的最高频率,即,但实际上在应用中受到低通滤波器的限制,通常,以便于滤波镜像频率,一般:由此可见DDS的工作频率带较宽,可以合成从直流到的频率信号,同时它的输出相位连续,频率稳定度高。3 总体设计方案31系统设计原理本文提出的采用DDS作为信号发生核心器件的全数控函数信号发生器设计方案, 根据输出信号波形类型可设置、输出信号幅度和频率可数控、输出频率宽等要求,选用了美国A/D公司的AD9850 芯片,并通过单片机程序控制和处理AD9850的32位频率控制字, 再经放大后加至以数字电位器为核心的数字衰减网络, 从而实现了信号幅度、频率、类型以及输出等选项的全数字控制。本系统主要由单片机、DDS直接频率信号合成器、数字衰减电路、真有效值转换模块、A/D转换模块、数字积分选择电路等部分组成。单片机AT89S52是整个系统关键部分,通过对键盘进行扫描读入相位信息,经转换后输出到芯片AD9850,输出波形。键盘输入的数字信息经AT89S52控制的LCD1602显示。32总体设计框图MCUAD9850LFP正弦信号输 出键盘液晶系统构成如下图3-1所示。图3-1 系统框图4系统硬件模块的组成4.1 键盘控制模块由于本设计中需要对输出波形的各项参数进行设置,所需要的按键较多,为了节省单片机的I/O口资源我们采用2*3的矩阵式键盘,如图4-1所示,通过2*3矩阵式键盘对波形的频率进行设置,操作简单方便,充分利用了单片机资源。图4-1 键盘控制电路4.2单片机控制模块主控电路中,以单片机为主体,通过分析键盘输入的数字值,对AD9850写入相应的控制字。它是系统的大脑。单片机(MICROCONTROLLER,又称微控制器)是在一块硅片上集成了各种部件的微型机算计,这些部件包括中央处理器CPU、数据存贮器RAM、程序存贮器ROM、定时器/计数器和多种I/O接口电路。4.2.1 AT89S52功能特性描述AT89S52是一种低功耗、高性能CMOS8位微控制器,具有8K 在系统可编程Flash 存储器。使用ATMEL公司高密度非易失性存储器技术制造,与工业80C51 产品指令和引脚完全兼容。片上Flash允许程序存储器在系统可编程,亦适于常规编程器。在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash,使得AT89S52为众多嵌入式控制应用系统提供高灵活、有效的解决方案。AT89S52具有以下标准功能:8k字节Flash、256字节RAM、32 位I/O 口线、看门狗定时器、2个数据指针、三个16 位定时器/计数器、一个6向量2级中断结构、全双工串行口、片内晶振及时钟电路。另外,AT89S52 可降至0Hz 静态逻辑操作,支持2种软件可选择节电模式。空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口、中断继续工作。掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。AT89S52的引脚结构如图:图4-2 单片机AT89S52引脚结构图P0口:P0口是一个8位漏极开路的双向I/O口。作为输出口,每位能驱动8个TTL逻辑电平。对P0端口写“1”时,引脚用作高阻抗输入。当访问外部程序和数据存储器时,P0口也被作为低8位地址/数据复用。在这种模式下,P0具有内部上拉电阻。在flash编程时,P0口也用来接收指令字节;在程序校验时,输出指令字节。程序校验时,需要外部上拉电阻。P1口:P1 口是一个具有内部上拉电阻的8 位双向I/O 口,P1 输出缓冲器能驱动4个TTL逻辑电平。对P1 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流。此外,P1.0和P1.2分别作定时器/计数器2的外部计数输入(P1.0/T2)和时器/计数器2的触发输入(P1.1/T2EX),在flash编程和校验时,P1口接收低8位地址字节。P2 口:P2 口是一个具有内部上拉电阻的8 位双向I/O 口,P2 输出缓冲器。能驱动4个TTL 逻辑电平。对P2 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流。在访问外部程序存储器或用16位地址读取外部数据存储器(例如执行MOVX DPTR)时,P2 口送出高八位地址。在这种应用中,P2口使用很强的内部上拉发送1。在使用8位地址(如MOVX RI)访问外部数据存储器时,P2口输出P2锁存器的内容。在flash编程和校验时,P2口也接收高8位地址字节和一些控制信号。随着计算机技术的高速发展,单片机以其自身的特点,已广泛应用于智能仪器、工业控制、家用电器、电子玩具等各个领域。4.2.2 时钟电路图4-3 时钟电路XTAL1是片内振荡器的反相放大器输入端,XTAL2则是输出端,使用外部振荡器时,外部振荡信号应直接加到XTAL1,而XTAL2悬空。内部方式时,时钟发生器对振荡脉冲二分频,如晶振为12MHz,时钟频率就为6MHz。晶振的频率可以在1MHz-24MHz内选择。电容取30PF左右。AT89C51中有一个用于构成内部振荡器的高增益反相放大器,引脚XTAL1和XTAL2分别是该放大器的输入端和输出端。这个放大器与作为反馈元件的片外石英晶体或者陶瓷谐振器一起构成自激振荡器。片外石英晶体或者陶瓷谐振器及电容C1、C2接在放大器的反馈回路中构成并联振荡电路。对外接电容C1、C2虽然没有十分严格的要求,但电容容量的大小会轻微影响振荡频率的高低、振荡器工作的稳定性、起振的难易程序及温度稳定性,这里采用电容30pF,晶振采用11.0592MHz。4.2.3复位电路AT89C51的外部复位电路有上电自动复位和手动按键复位。上电复位电容充电来实现。手动按键复位又分为按键电平复位和按键脉冲复位。按键电平复位电路是在普通RC复位电路的基础上接一个有下拉电阻10K、上拉电容10f接VCC,电源由开关经串接的1K限流电阻至复位脚(和上拉电容并联),上拉电容支路负责在“上电”瞬间实施复位;开关通过1K上拉电阻和10K下拉电阻分压器,保证对单片机实施按键电平复位。电路图如图4-4所示。图4-4复位电路4.3 LCD显示模块4.3.1 LCD1602的主要性能1602型LCD可以显示2行16个字符,有8位数据总线D0D7和RS,R/W,EN三个控制端口,工作电压为5V,并且具有字符对比度调节和背光功能。1602型LCD的接口信号说明,如表4-1所示:表4-1 LCD1602接口说明编号符号引脚说明编号符号引脚说明1VSS电源地9D2Data I/O2VDD电源正极10D3Data I/O3VL液晶显示偏压信号11D4Data I/O4RS数据/命令选择端(H/L)12D5Data I/O5R/W读写选择端(H/L)13D6Data I/O6E使能信号14D7Data I/O7D0Data I/O15BLA背光源正极8D1Data I/O16BLK背光源负极基本操作程序读状态:输入:RS=L,RW=H,E=H输出:D0D7=状态字读数据:输入:RS=H,RW=H,E=H输出:无写指令:输入:RS=L,RW=L,D0D7=指令码,E=高脉冲 输出:D0D7=数据写数据:输入:RS=H,RW=L,D0D7=数据,E=高脉冲 输出:无4.3.2 LCD1602与单机的连接由于本设计显示的数字位数较多,我们采用LCD1602作为显示装置,既能达到显示位数的目的,有能达到节省单片机资源的效果,如图4-5所示,LCD1602与单片机的连接,1602的DB0DB7与89S52的P2口相接,RS与P13相接,R/W与P12相接,E与P11相接。VL与地之间接一个10K的滑动变阻器起到LCD1602初始显示的调节。图4-5 LCD与单片机的接口电路4.4 AD9850 与单片机连接模块4.4.1 AD9850简介美国AD公司推出的高集成度频率合成器AD9850便是采用DDS技术的典型产品之一。AD9850采用先进的CMOS工艺,其功耗在3.3V供电时仅为155mW,扩展工业级温度范围为4080,采用28脚SSOP表面封装形式。AD9850的引脚排列如图4-6所示,图4-7为其组成框图。中层虚线内是一个完整的可编程DDS系统,外层虚线内包含了AD9850的主要组成部分。AD9850内含可编程DDS系统和高速比较器,能实现全数字编程控制的频率合成。可编程DDS系统的核心是相位累加器,它由一个加法器和一个位相位寄存器组成, 一般为2432。每来一个外部参考时钟,相位寄存器便以步长递加。相位寄存器的输出与相位控制字相加后可输入到正弦查询表地址上。正弦查询表包含一个正弦波周期的数字幅度信息,每一个地址对应正弦波中0o-360范围的一个相位点。查询表把输入地址的相位信息映射成正弦图4-6 AD9850管脚排列图图4-7 AD9850组成框图波幅度信号,然后驱动DAC以输出模拟量。相位寄存器每过个外部参考时钟后返回到初始状态一次,相应地正弦查询表每经过一个循环也回到初始位置,从而使整个DDS系统输出一个正弦波。输出的正弦波周期,频率,、分别为外部参考时钟的周期和频率。AD9850采用32位的相位累加器将信号截断成14位输入到正弦查询表,查询表的输出再被截断成10位后输入到DAC, DAC再输出两个互补的电流。DAC满量程输出电流通过一个外接电阻RSET调节,调节关系为: Rset的典型值是3.9k。将DAC的输出经低通滤波后接到AD9850内部的高速比较器上即可直接输出一个抖动很小的方波。AD9850在接上精密时钟源和写入频率相位控制字之后就可产生一个频率和相位都可编程控制的模拟正弦波输出,此正弦波可直接用作频率信号源或经内部的高速比较器转换为方波输出。在125MHz的时钟下, 32位的频率控制字可使AD9850的输出频率分辨率达0.0291Hz;并具有5位相位控制位,而且允许相位按增量180、90、45、22.5、11.25或这些值的组合进行调整。4.4.2 AD9850的控制字与控制时序AD9850有40位控制字, 32位用于频率控制,5位用于相位控制, 1位用于电源休眠(Powerdown)控制, 2位用于选择工作方式。这40位控制字可通过并行方式或串行方式输入到AD9850,图4-8是控制字并行输入的控制时序图,在并行装入方式中,通过8位总线D0D7将可数据输入到寄存器,在重复5次之后再在FQ-UD上升沿把40位数据从输入寄存器装入到频率/相位数据寄存器(更新DDS输出频率和相位),同时把地址指针复位到第一个输入寄存器。接着在W-CLK的上升沿装入8位数据,并把指针指向下一个输入寄存器,连续5个W-CLK上升沿后, W-CLK的边沿就不再起作用,直到复位信号或FQ-UD上升沿把地址指针复位到第一个寄存器。图4-8 控制字并行输入的时序图图4-9 控制字串行输入的时序图在串行输入方式,W-CLK上升沿把25引脚的一位数据串行移入,当移动40位后,用一个FQ_UD脉冲即可更新输出频率和相位。图4-9是相应的控制字串行输入的控制时序图。AD9850的复位(RESET)信号为高电平有效,且脉冲宽度不小于5个参考时钟周期。AD9850的参考时钟频率一般远高于单片机的时钟频率,因此AD9850的复位(RESET)端可与单片机的复位端直接相连。表4-2AD9850串行装载的数据结构位代号功能位代号功能位代号功能位代号功能W0Freq-b0(LSB)W10Freq-b10W20Freq-b20W30Freq-b30W1Freq-b1W11Freq-b11W21Freq-b21W31Freq-b31(MSB)W2Freq-b2W12Freq-b12W22Freq-b22W32ControlW3Freq-b3W13Freq-b13W23Freq-b23W33ControlW4Freq-b4W14Freq-b14W24Freq-b24W34Power-DownW5Freq-b5W15Freq-b15W25Freq-b25W35Phase-b0(LSB)W6Freq-b6W16Freq-b16W26Freq-b26W36Phase-b 1W7Freq-b7W17Freq-b17W27Freq-b27W37Phase-b 2W8Freq-b8W18Freq-b18W28Freq-b28W38Phase-b 3W9Freq-b9W19Freq-b19W29Freq-b29W39Phase-b4(MSB)在表4-2中,位W0W31的32位是频率控制字,改变它的内容可以改变AD9850的输出频率。位W32和W33用于工厂测试,应向这两位赋0。位W34用来控制AD9850的上电和掉电,当不需要输出信号时,通过打这一位置1来实现掉电。位W35W39的5位是相位控制字,改变它的内容可以改变AD9850的输出相位。串行装载时,AD9850的D7引脚和W_CLK引脚组成同步串行接口,这个接口可以直接与89S52相接连。40位控制/数据字通过AD9850的D7引脚在W_CLK引脚的脉冲信号上升边沿作用下分40次装入。W0在前,W39在后,依次装入。完成40位控制/数据字的装载后,FQ_UD引脚的脉冲信号上升沿刷新AD9850的工作状态,同时复位寄存器指针,准备下一次位控制/数据字的装入。4.4.3单片机与AD9850的接口单片机与AD9850的接口既可采用并行方式,也可采用串行方式,但为了充分发挥芯片的高速性能,应在单片机资源允许的情况下尽可能选择并行方式,本文重点介绍其并行方式的接口。并行接口接口电路比较简单,但占用单片机资源相对较多,图4-10是I/O方式并行接口的电路图,AD9850的数据线D0D7与P1口相连, FQ_UD和W_CLK分别与P2.3(10引脚)和P2.4(11引脚)相连,所有的时序关系均可通过软件控制实现。图4-10 AD9850与单片机连接4.5 滤波电路设计为了使输出的频率不受外界和一些杂波的干扰,需用一个低通滤波器(LPF)滤除高次谐波。常用的滤波器的频率响应有三种:巴特沃斯型(Butterworth),切比雪夫型 (Chebyshev)和椭圆型 (Cauer)。其中巴特沃斯滤波器通带最平坦,它的通带内没有纹波,在靠近零频处,有最平坦通带,趋向阻带时衰减单调增大,缺点是从通带到阻带的过渡带最宽,对于带外干扰信号的衰减作用最弱,过渡带不够陡峭,因此它适用于对通带要求较高,而去除的频率离通带较远的情况;切比雪夫滤波器在通带内衰减在零值和一个上限值之间做等起伏变化,阻带内衰减单调增大,带内有起伏,但过渡带比较陡峭;椭圆滤波器不仅通带内有起伏,阻带内也有起伏,而且过渡带陡峭。比较起来,椭圆滤波器性能更好,本设计中采用的是椭圆滤波器。具体电路图如图4-11所示。图4-11 滤波电路4.6 DDS硬件抗干扰处理DDS的时钟频率很高,对周围电路有一定影响,在电路中采取了一些抗干扰措施,如:引线尽量短,减少交叉,每个芯片的电源与地之间都解忧去耦电容,数字地与模地分开。5 软件设计与调试51 程序设计流程图 通过程序预置频率,并实现对频率步进的控制,处理用户由键盘键入的频率值,判断是否超出范围,生成频率控制字,经并行方式送入DDS,合成用户所需的频率,并通过程序实现频率的显示。程序流程图如图5-1所示。开始按键处理是否有键按下AD9850数据更新更新频率控制字键盘扫描LCD显示初始化进入主程序YN图5-1 程序流程图5.2软件设计与调试本系统的软件调试可以在Keil uvision2的环境中完成,Keil系统为软件的开发和调试提供了良好的用户界面和强大的功能。程序调试无误后,可以装入单片机中进行测试,用单片机系统与DDS系统相结合,并用示波器观察测试的效果。5.2.1部分源程序#include #define ddsdata P2sbit reset=P27;sbit wclk=P26;sbit fqud=P25;sbit strobe0=P10;sbit strobe1=P11;void delay(unsigned char i)while(i-);void initialad9850(void)/写相位、频率控制字前初始化 strobe0=0;strobe1=0;ddsdata=0x00;strobe1=1;reset=1;reset=0;strobe1=0;void writebyte(unsigned char frepha) /8位并行方式写相位、频率控制字ddsdata=frepha;strobe0=1;strobe0=0;/wclk = 0;ddsdata=0x00; /须保证reset、fqud也为低,否则时序有误strobe1=1;wclk = 1;wclk = 0;strobe1=0;void updataad9850(void)/以40位控制字进行相位、频率更新ddsdata=0x00;/须保证reset、wclk也为低,否则时序有误strobe1=1;fqud=1;fqud=0;strobe1=0;void freqcom(unsigned long data frequency)unsigned long data freq32;char data j;unsigned char data freq4;freq32=frequency*34.359738368; /232/125000000freq3=freq32/16777216;freq2=(freq32/65536)%256;freq1=(freq32/256)%256;freq0=freq32%256;writebyte(0x00); / 必须保证此字节最低两位为00,厂家保留测试位,写错后果严重for(j=3;j=0;j-)writebyte(freqj); updataad9850();void main()initialad9850();freqcom(3000);/while(1);结 论毕业设计完成的主要工作是完成单片机控制AD9850产生正弦信号,并能显示出相对应的频率,且使频率在020MHz的范围内能以1Hz为步长进行调整。 通过搜集目前DDS技术的相关资料,了解国内外DDS信号发生器的相关制作方法,并通过设计方案的比较,针对设计任务提出了可行方案。在设计方案中,结合单片机的功能特点及其控制特性,利用简便的单片机C-51语言和其内部时钟,以单片机作为控制的核心。根据设计方案,详细地阐述了单片机的控制原理、AD9850的使用方法、制作了电路原理样机并进行调试。结果表明,所设计的电路和软件能完成基本的测试功能。 总之,DDS芯片因其转换速度快、性能价格比高、体积小、输出的波形稳定度高、精度高、分辨率高,而且输出波形的频率、相位可控,因而在各类电子设备,特别是通信、雷达等领域中的应用将越来越广泛。 致 谢 经过一个月的忙碌和工作,本次毕业设计已经接近尾声。留给了我很深的思考,只有通过学习才能获得知识,开始时并不是什么都会,但是只要努力了就一定会有收获 虽然中间的过程很辛苦,但是只要有结果,就可以忘记艰辛的过程。此外通过这次设计,我对电子设计的认识有了很大的提高,同时认识到自己在硬件设计方面还有很大的欠缺。主要表现在对很多原理知识掌握的不是很清楚,对硬件设计的正确方法掌握不多,造成了很多的重复性工作。,由于经验缺乏,难免有许多考虑不周全的地方,如果没有指导老师的督促和指导,以及于天柱同学的支持和帮助下,要想完成论文是很难的。论文题目的拟定到实施是根据之前在电子比赛实训中所学到的知识的应用。因此,在这里要感谢我的指导老师们。感谢他们一直很悉心的指导我们的工作,无论是什么时间段去找他们答疑提问,包括是下班的休息时间,他都是有问必答,同时还为我们搜索了许多相关知识的资料,给我解决了很多困难,老师兢兢业业的工作精神、严谨的治学态度、踏实真诚的处事态度,对事负责,对学生负责,使我深受感动,这是我在现在和今后的学习、工作生活中要努力学习的。在此,我向老师致以最衷的感谢!最后,衷心的感谢各位答辩组的老师!感谢您们能在百忙之中参与我的论文答辩工作。谢谢!参 考 文 献1 童诗白,华成英 模拟电子技术基础 高等教育出版社 20032 陈明荧 单片机设计实训教材 清华大学出版社 20043 阎石 数字电子技术基础 高教出版社 20044 全国大学生电子设计竞赛组委员,获作品汇编,北京;北京理工大学出版社20045 瞿安连 应用电子技术,北京;科学出版社20036 丁元杰 单片机原理及应用 机械工艺出版社19997 全国大学生电子设计竞赛组委会编,全国大学生电子设计竞赛获奖作品精选(1994-1999)北京;北京理工大学出版社2003.38 何希才,姜余祥 新型稳压电源及其应用,北京;国防工业出版社20019 杨振江 A/D,D/A转换器接口技术,西安;西安电子科技大学出版社199610赵景波 向华 Protel99SE应用与实例教程。人民邮电出版社出版发行 200911吴镇扬.数字信号处理M.北京:高等教育出版社,2004.9.12 石熊.DDS芯片AD9850的工作原理及其与单片机的接口.国外电子元器件,2001.5 附录:硬件原理图
展开阅读全文