资源描述
课时跟踪检测(十七) 高考基础题型得分练1设f(x)a(x5)26ln x(x0),其中aR,曲线yf(x)在点(1,f(1)处的切线与y轴相交于点(0,6)(1)确定a的值;(2)求函数f(x)的单调区间与极值解:(1)因为f(x)a(x5)26ln x(x0),故f(x)2a(x5).令x1,得f(1)16a,f(1)68a,所以曲线yf(x)在点(1,f(1)处的切线方程为y16a(68a)(x1),由点(0,6)在切线上,可得616a8a6,解得a.(2)由(1)知,f(x)(x5)26ln x(x0),f(x)x5.令f(x)0,解得x12,x23.当0x3时,f(x)0,故f(x)的单调递增区间是(0,2),(3,);当2x3时,f(x)0,故f(x)的单调递减区间是(2,3)由此可知f(x)在x2处取得极大值f(2)6ln 2,在x3处取得极小值f(3)26ln 3.22017甘肃兰州模拟已知函数f(x)exax(aR,e为自然对数的底数)(1)讨论函数f(x)的单调性;(2)若a1,函数g(x)(xm)f(x)exx2x在(2,)上为增函数,求实数m的取值范围解:(1)函数f(x)的定义域为R,f(x)exa.当a0时,f(x)0,f(x)在R上为增函数;当a0时,由f(x)0得xln a,则当x(,ln a)时,f(x)0,函数f(x)在(ln a,)上为增函数(2)当a1时,g(x)(xm)(exx)exx2x,g(x)在(2,)上为增函数,g(x)xexmexm10在(2,)上恒成立,即m在(2,)上恒成立,令h(x),x(2,),h(x).令L(x)exx2,L(x)ex10在(2,)上恒成立,即L(x)exx2在(2,)上为增函数,即L(x)L(2)e240,h(x)0,即h(x)在(2,)上为增函数,h(x)h(2),m.实数m的取值范围是.3已知f(x)ax2(a2)xln x.(1)当a1时,求yf(x)在(1,f(1)处的切线方程;(2)当a0时,若f(x)在区间1,e上最小值为2,求实数a的取值范围解:(1)当a1时,f(x)x23xln x,f(x)2x3.因为f(1)0,f(1)2,所以曲线yf(x)在点(1,2)处的切线方程是y2.(2)函数f(x)ax2(a2)xln x的定义域是(0,)当a0时,f(x)2ax(a2),令f(x)0,解得x或x.当01,即a1时,f(x)在1,e上单调递增,所以f(x)在1,e上的最小值是f(1)2;当1e时,f(x)在1,e上的最小值ff(1)2,不合题意;当e时,f(x)在1,e上单调递减,此时f(x)在1,e上的最小值f(e)f(1)2,不合题意综上,实数a的取值范围为1,)4已知函数f(x)exln(xm)(1)设x0是f(x)的极值点,求m的值,并讨论f(x)的单调性;(2)当m2时,证明:f(x)0.(1)解:f(x)ex,由x0是f(x)的极值点得f(0)0,所以m1.于是f(x)exln(x1),定义域为(1,),f(x)ex.函数f(x)ex在(1,)上单调递增,且f(0)0,因此当x(1,0)时,f(x)0;当x(0,)时,f(x)0.所以f(x)在(1,0)上单调递减,在(0,)上单调递增(2)证明:当m2,x(m,)时,ln(xm)ln(x2),故只需证明当m2时,f(x)0.当m2时,函数f(x)ex在(2,)上单调递增又f(1)0,f(0)0,故f(x)0在(2,)上有唯一实根x0,且x0(1,0)当x(2,x0)时,f(x)0;当x(x0,)时,f(x)0,从而当xx0时,f(x)取得最小值由f(x0)0得ex0,ln(x02)x0,故f(x)f(x0)x00.综上,当m2时,f(x)0.冲刺名校能力提升练1已知aR,函数f(x)axln x,x(0,e(其中e是自然对数的底数)(1)当a2时,求f(x)的单调区间和极值;(2)求函数f(x)在区间(0,e上的最小值解:(1)当a2时,f(x)2xln x,对f(x)求导,得f(x)2.所以f(x)的单调递减区间是,单调递增区间是,由此可知f(x)的极小值为f1ln 2,没有极大值(2)记g(a)为函数f(x)在区间(0,e上的最小值f(x)a.当a0时,f(x)0,所以f(x)在区间(0,e上单调递减,则g(a)f(e)ae1;当0时,f(x)在区间上单调递减,在区间上单调递增,则g(a)f1ln a.综上所述,g(a)22017河南郑州模拟已知函数f(x)ax1ln x,其中a为常数(1)当a时,若f(x)在区间(0,e)上的最大值为4,求a的值;(2)当a时,若函数g(x)|f(x)|存在零点,求实数b的取值范围解:(1)f(x)a,令f(x)0得x,因为a,所以00得0x;由f(x)0得x0,当a时,f(x)1ln x,所以f(x),当0x0;当xe时,f(x)0.所以,f(x)的增区间为(0,e),减区间为(e,),所以f(x)maxf(e)1,所以|f(x)|1.令h(x),则h(x).当0x0;当xe时,h(x)0.从而h(x)在(0,e)上单调递增,在(e,)上单调递减,所以h(x)maxh(e),要使方程|f(x)|有实数根,只需h(x)max1即可,故b2.即所求实数b的取值范围是.3已知函数f(x)(x1)ex(e为自然对数的底数)(1)求函数f(x)的单调区间;(2)设函数(x)xf(x)tf(x)ex,存在实数x1,x20,1,使得2(x1)(x2)成立求实数t的取值范围解:(1)函数的定义域为R,f(x),当x0;当x0时,f(x)0.f(x)在(,0)上单调递增,在(0,)上单调递减(2)假设存在x1,x20,1,使得2(x1)(x2)成立,则2(x)min(x)max.(x)xf(x)tf(x)ex,(x).对于x0,1,当t1时,(x)0,(x)在0,1上单调递减,2(1)31.当t0时,(x)0,(x)在0,1上单调递增,2(0)(1),即t32e0.当0t1时,若x0,t),则(x)0,(x)在(t,1上单调递增,2(t)max(0),(1),即2m恒成立,求实数m的最大值解:(1)由题意可知,h(x)x2axln x(x0),则h(x)(x0),若h(x)的单调减区间是,则h(1)h0,解得a3,而当a3时,h(x)(x0)由h(x)0),ax(x0)令(x)x(x0),则(x),yx2ln x1在(0,)上是增函数,且当x1时,y0.当x(0,1)时,(x)0.故(x)在(0,1)上是减函数,在(1,)上是增函数,(x)min(1)1,故a1.即实数a的取值范围为(,1(3)由题意可知,h(x)x2axln x(x0),则h(x)(x0)可得方程2x2ax10(x0)有两个不相等的实数根x1,x2,且x1,x1x2,x2(1,),且ax12x1,ax22x1,h(x1)h(x2)(xax1ln x1)(xax2ln x2)x(2x1)ln x1x(2x1)ln x2xxlnxln(2x)(x21)设L(x)x2ln(2x2)(x1),则L(x)0(x1),L(x)在(1,)上是增函数,L(x)L(1)ln 2,即h(x1)h(x2)ln 2,mln 2.即m的最大值为ln 2.6EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F375
展开阅读全文