资源描述
阅读理解型问题一、专题诠释阅读理解型问题在近几年的全国中考试题中频频“亮相”,特别引起我们的重视.这类问题一般文字叙述较长,信息量较大,各种关系错综复杂,考查的知识也灵活多样,既考查学生的阅读能力,又考查学生的解题能力的新颖数学题. 二、解题策略与解法精讲解决阅读理解问题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含了什么新的数学知识、结论,或揭示了什么数学规律,或暗示了什么新的解题方法,然后展开联想,将获得的新信息、新知识、新方法进行迁移,建模应用,解决题目中提出的问题.三、考点精讲考点一: 阅读试题提供新定义、新定理,解决新问题(2011连云港)某课题研究小组就图形面积问题进行专题研究,他们发现如下结论:(1)有一条边对应相等的两个三角形面积之比等于这条边上的对应高之比;(2)有一个角对应相等的两个三角形面积之比等于夹这个角的两边乘积之比;现请你继续对下面问题进行探究,探究过程可直接应用上述结论(S表示面积) 问题1:如图1,现有一块三角形纸板ABC,P1,P2三等分边AB,R1,R2三等分边ACABC图2P1P2R2R1DQ1Q2ABC图1P1P2R2R1经探究知SABC,请证明 问题2:若有另一块三角形纸板,可将其与问题1中的拼合成四边形ABCD,如图2,Q1,Q2三等分边DC请探究与S四边形ABCD之间的数量关系 问题3:如图3,P1,P2,P3,P4五等分边AB,Q1,Q2,Q3,Q4五等分边DC若S四边形ABCD1,求 问题4:如图4,P1,P2,P3四等分边AB,Q1,Q2,Q3四等分边DC,P1Q1,P2Q2,P3Q3ADP1P2P3BQ1Q2Q3C图4S1S2S3S4将四边形ABCD分成四个部分,面积分别为S1,S1 / 192,S3,S4请直接写出含有S1,S2,S3,S4的一个等式【分析】问题1:由平行和相似三角形的判定,再由相似三角形面积比是对应边的比的平方的性质可得。 问题2:由问题1的结果和所给结论(2)有一个角对应相等的两个三角形面积之比等于夹这个角的两边乘积之比,可得。 问题3:由问题2的结果经过等量代换可求。 问题4:由问题2可知S1S4S2S3。解:问题1:P1,P2三等分边AB,R1,R2三等分边AC, P1R1P2R2BCAP1 R1AP2R2ABC,且面积比为1:4:9ABC图2P1P2R2R1DQ1Q2 SABCSABC问题2:连接Q1R1,Q2R2,如图,由问题1的结论,可知 SABC ,SACD S四边形ABCD 由P1,P2三等分边AB,R1,R2三等分边AC,Q1,Q2三等分边DC, 可得P1R1:P2R2Q2R2:Q1R11:2,且P1R1P2R2,Q2R2Q1R1 P1R1AP2R2A,Q1R1AQ2R2AP1R1Q1P2R2 Q2 由结论(2),可知 S四边形ABCD 问题3:设A,B,设C, 由问题2的结论,可知A,B AB(S四边形ABCDC)(1C) 又C(ABC),即C(1C)C 整理得C,即 问题4:S1S4S2S3【点评】该种阅读理解题给出新的定理,学生需要学会新定理,借助于试题告诉的信息(结论1、2)来解决试题考点二、阅读试题信息,归纳总结提炼数学思想方法(2011北京)阅读下面材料:小伟遇到这样一个问题,如图1,在梯形ABCD中,ADBC,对角线AC,BD相交于点O。若梯形ABCD的面积为1,试求以AC,BD,的长度为三边长的三角形的面积。 小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可。他先后尝试了翻折,旋转,平移的方法,发现通过平移可以解决这个问题。他的方法是过点D作AC的平行线交BC的延长线于点E,得到的BDE即是以AC,BD,的长度为三边长的三角形(如图2)。参考小伟同学的思考问题的方法,解决下列问题:如图3,ABC的三条中线分别为AD,BE,CF。(1)在图3中利用图形变换画出并指明以AD,BE,CF的长度为三边长的一个三角形(保留画图痕迹);(2)若ABC的面积为1,则以AD,BE,CF的长度为三边长的三角形的面积等于_。【分析】:根据平移可知,ADCECD,且由梯形的性质知ADB与ADC的面积相等,即BDE的面积等于梯形ABCD的面积(1)分别过点F、C作BE、AD的平行线交于点P,得到的CFP即是以AD、BE、CF的长度为三边长的一个三角形(2)由平移的性质可得对应线段平行且相等,对应角相等结合图形知以AD,BE,CF的长度为三边长的三角形的面积等于ABC的面积的解答:解:BDE的面积等于1(1)如图以AD、BE、CF的长度为三边长的一个三角形是CFP(2)以AD、BE、CF的长度为三边长的三角形的面积等于【点评】:本题考查平移的基本性质:平移不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等考点三、阅读相关信息,通过归纳探索,发现规律,得出结论图9-1AO1OO2B(2009河北)如图9-1至图9-5,O均作无滑动滚动,O1、O2、O3、O4均表示O与线段AB或BC相切于端点时刻的位置,O的周长为cB图9-2A CnDO1O2阅读理解:(1)如图9-1,O从O1的位置出发,沿AB滚动到O2的位置,当AB=c时,O恰好自转1周(2)如图9-2,ABC相邻的补角是n,O在ABC外部沿A-B-C滚动,在点B处,必须由O1的位置旋转到O2的位置,O绕点B旋转的角O1BO2 = n,O在点B处自转周实践应用:(1)在阅读理解的(1)中,若AB=2c,则O自转 周;若AB=l,则O自转 周在阅读理解的(2)中,若ABC= 120,则O在点B处自转 周;若ABC= 60,则O在点B处自转_周(2)如图9-3,ABC=90,AB=BC=cO从O1的位置出发,在ABC外部沿A-B-C滚动到O4的位置,O自转 周拓展联想:(1)如图9-4,ABC的周长为l,O从与AB相切于点D的位置出发,在ABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,O自转了多少周?请说明理由D图9-5OOABC图9-4D(2)如图9-5,多边形的周长为l,O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出O自转的周数【分析】:(1)当AB=c时,O恰好自转1周(2)如图9-2,ABC相邻的补角是n,O在ABC外部沿A-B-C滚动,在点B处,必须由O1的位置旋转到O2的位置,O绕点B旋转的角O1BO2 = n,O在点B处自转周,通过上面可以知道圆的转动规律。解:实践应用(1)2;(2)拓展联想(1)ABC的周长为l,O在三边上自转了周 又三角形的外角和是360,在三个顶点处,O自转了(周)O共自转了(+1)周 (2)+1 【评析】:本题以课题学习的形式呈现,从简单的“圆在直线段和角外部滚动的周数”的数学事实出发,循序渐进,层层深入,引导学生在解决问题的过程中,不断产生认知发展,进而在不知不觉中提炼归纳出一般性的结论,使自己对知识的认识得到升华考点四、阅读试题信息,借助已有数学思想方法解决新问题(2011南京)问题情境:已知矩形的面积为a(a为常数,a0),当该矩形的长为多少时,它的周长最小?最小值是多少?数学模型:设该矩形的长为x,周长为y,则y与x的函数关系式为探索研究:我们可以借鉴以前研究函数的经验,先探索函数的图象性质1xyO13452235411 填写下表,画出函数的图象:x1234y观察图象,写出该函数两条不同类型的性质;在求二次函数y=ax2bxc(a0)的最大(小)值时,除了通过观察图象,还可以通过配方得到请你通过配方求函数(x0)的最小值解决问题:用上述方法解决“问题情境”中的问题,直接写出答案【分析】将x值代入函类数关系式求出y值, 描点作图即可. 然后分析函数图像.仿=所以, 当=0,即时,函数的最小值为解答:x1234y2函数的图象如图本题答案不唯一,下列解法供参考当时,随增大而减小;当时,随增大而增大;当时函数的最小值为2=当=0,即时,函数的最小值为2 仿=当=0,即时,函数的最小值为 当该矩形的长为时,它的周长最小,最小值为 【点评】:画和分析函数的图象,借助图像分析函数性质.类比一元二次方程的配方法求函数的最大(小)值考点五、阅读图表等统计资料,提供有关信息解决相关问题(2011无锡)十一届全国人大常委会第二十次会议审议的个人所得税法修正案草案 (简称“个税法草案”),拟将现行个人所得税的起征点由每月2000元提高到3000元,并将9级超额累进税率修改为7级,两种征税方法的15级税率情况见下表:税级现行征税方法草案征税方法月应纳税额x税率速算扣除数月应纳税额x税率速算扣除数1x50050x1 500502500x200010251500x45001032000x5000151254500x90002045000x20000203759000x3500025975520000x4000025137535000x55 000302725 注:“月应纳税额”为个人每月收入中超出起征点应该纳税部分的金额 “速算扣除数”是为快捷简便计算个人所得税而设定的一个数例如:按现行个人所得税法的规定,某人今年3月的应纳税额为2600元,他应缴税款可以用下面两种方法之一来计算:方法一:按13级超额累进税率计算,即5005+150010十60015=265(元)方法二:用“月应纳税额x适用税率一速算扣除数”计算,即260015一l25=265(元)。(1)请把表中空缺的“速算扣除数”填写完整;(2)甲今年3月缴了个人所得税1060元,若按“个税法草案”计算,则他应缴税款多少元?(3)乙今年3月缴了个人所得税3千多元,若按“个税法草案”计算,他应缴的税款恰好不 变,那么乙今年3月所缴税款的具体数额为多少元?【分析】(1) 当1500x4500时, 应缴个人所得税为当4500x9000时, 应缴个人所得税为 (2) 缴了个人所得税1060元, 要求应缴税款, 只要求出其适应哪一档玩税级, 直接计算即可. (3) 同(2), 但应清楚“月应纳税额”为个人每月收入中超出起征点应该纳税部分的金额, 而“个税法草案”拟将现行个人所得税的起征点由每月2000元提高到3000元, 依据此可列式求解.解答: (1)75, 525 (2) 列出现行征税方法和草案征税方法月税额缴个人所得税y:税级现行征税方法月税额缴个人所得税y草案征税方法月税额缴个人所得税y1y25y75225y17575y3753175y625375y12754625y36251275y777553625y86257775, =. 探究证明:(1), AB为O直径,., A=BCD. .即,. (2)当时, =;时, 结论归纳: 实践应用设长方形一边长为米,则另一边长为米,设镜框周长为l米,则 当,即(米)时,镜框周长最小此时四边形为正方形时,周长最小为4 米. 第二部分 练习部分答案1、 D2、(1) (2)解:设,则是的二次函数抛物线开口向上又当时,解得 由此得抛物线的大致图象如图所示 观察函数图象可知:当或时, 的解集是:或3、解:(1)如图,连接AC交BD于O,在正方形ABCD中,ACBD BE=BCCO为等腰BCE腰上的高, 根据上述结论可得 FM+FN=CO而CO=AC=FM+FN= (2)如图,设等边ABC的边长为,连接PA,BP,PC,则SBCP+SACP+SABP=SABC 即 (3)+是定值 +(为正边形的边心距)4、(1)设抛物线的解析式为: 把A(3,0)代入解析式求得所以 设直线AB的解析式为:由求得B点的坐标为 把,代入中解得:所以(2)因为C点坐标为(,4)所以当x时,y14,y22所以CD4-22(平方单位) (3)假设存在符合条件的点P,设P点的横坐标为x,PAB的铅垂高为h,则 由SPAB=SCAB得:化简得:解得,将代入中,解得P点坐标为5、解:(1)设直线l的函数表达式为yk xb. 直线l与直线y2x1平行, k2. 直线l过点(1,4), 2b 4, b 6.24624622(5题) 直线l的函数表达式为y2x6. 直线的图象如图. (2) 直线分别与轴、轴交于点、,点、的坐标分别为(0,6)、(3,0).,直线为y2x+t.C点的坐标为. t0, .C点在x轴的正半轴上.当C点在B点的左侧时,;当C点在B点的右侧时, .的面积关于的函数表达式为 希望对大家有所帮助,多谢您的浏览!
展开阅读全文