资源描述
分析法一、教学目标:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。二、教学重点:了解分析法和综合法的思考过程、特点。难点:分析法的思考过程、特点三、教学方法:探析归纳,讲练结合四、教学过程(一)、复习:直接证明的方法:综合法、分析法。(二)、引入新课分析法和综合法是思维方向相反的两种思考方法。在数学解题中,分析法是从数学题的待证结论或需求问题出发,一步一步地探索下去,最后达到题设的已知条件。综合法则是从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求问题。对于解答证明来说,分析法表现为执果索因,综合法表现为由果导因,它们是寻求解题思路的两种基本思考方法,应用十分广泛。在很多数学命题的证明中,往往需要综合地运用这两种思维方法。(三)、例题讲解:例1:如图、已知BE,CF分别为ABC的边AC,AB上的高,G为EF的中点,H为BC的中点.求证:HGEF.证明:考虑待证的结论“HGEF” .根据命题的条件:G为EF的中点,连接EH,HF,只要证明EHF为等腰三角形,即EH=HF.根据条件CFAB,且H为BC的中点,可知FH是RtBCF斜边上的中线.所以 .同理 .这样就证明了EHF为等腰三角形.所以 HGEF.例2:已知:a,b,c都是正实数,且ab+bc+ca=1.求证:a+b+c.- 1 - / 4证明:考虑待证的结论“a+b+c” ,因为a+b+c0,只需证明,即 .又 ab+bc+ca=1,所以,只需证明,即 .因为 ab+bc+ca=1,所以,只需证明 ,只需证明 ,即.由于任意实数的平方都非负,故上式成立.所以 a+b+c.例3.如图,SA平面ABC,ABBC,过A作SB的垂线,垂足为E,过E作SC的垂线,垂足为F,求证 AFSC证明:要证AFSC,只需证:SC平面AEF,只需证:AESC,只需证:AE平面SBC,只需证:AEBC,只需证:BC平面SAB,只需证:BCSA,只需证:SA平面ABC,因为:SA平面ABC成立。所以. AFSC成立。(四)、小结:综合法与分析法各有其特点.从需求解题思路来看,分析法执果索因,常常根底渐近,有希望成功;综合法由因导果,往往枝节横生,不容易奏效,就表达过程而论,分析法叙述烦琐,文辞冗长;综合法形式简洁,条理清晰.也就是说,分析法利于思考,综合法宜于表述.因此,在实际解题时,常常把分析法和综合法结合起来运用,先以分析法为主寻求解题思路,再用综合法有条理地表述解题过程.(五)、练习:课本练习2.(六)、作业:课本习题1-2: 7、9.五、教后反思: 希望对大家有所帮助,多谢您的浏览!
展开阅读全文