课堂教学中创新能力培养的实践与思考

上传人:仙*** 文档编号:35537205 上传时间:2021-10-27 格式:DOC 页数:3 大小:60KB
返回 下载 相关 举报
课堂教学中创新能力培养的实践与思考_第1页
第1页 / 共3页
课堂教学中创新能力培养的实践与思考_第2页
第2页 / 共3页
课堂教学中创新能力培养的实践与思考_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述
课堂教学中创新能力培养的实践与思考顺德一中 吕德荣随着数学教材改革的深入开展,提高学生能力的问题越来越引起人们的重视。为了进一步提高数学学习的质量,有必要对能力问题开展进一步的研究。心理学研究指出,能力分一般能力和特殊能力。一般能力是指顺利完成各种活动所必备的基本心理能力,特殊能力是指顺利完成某种特殊活动所必备的能力。在数学教育领域内,一般能力包括学习新的数学知识的能力,探究数学问题的能力,应用数学知识解决实际问题的能力,提高这些能力将大大推动学生素质的提高。数学创新能力是数学的一般能力,包括对数学问题的质疑能力、建立数学模型的能力(即把实际问题转化为数学问题的能力)、对数学问题猜测的能力等,在数学教学过程中,教师应特别重视对学生创新能力的培养,使每一个学生都养成独立分析问题、探索问题、解决问题和延伸问题的习惯。让所有的学生都有能力提出新见解、发现新思路、解决新问题。数学创新能力的培养相比数学知识的传授更重要,数学创新能力的培养有利于学生形成良好的数学的思维品质以及运用数学思想方法的能力。一、 培养学生善思、善想、善问的数学品质,提高质疑能力就研究性学习而言,需要培养学生发现问题和提出问题的能力,而发现问题和提出问题需要一定的方法,这些方法应在课堂教学中逐步培养。高中学生对数学知识的获得大多表现在记忆和解题上,缺乏对知识间的联系和分析,被动接受的多,主动反思的少。高中学生的数学创新能力主要表现在:在解题上提出新颖,简洁,独特方法。运用类比的方法对某些结论进行推广和延伸,获的更一般的结论。如2000年上海秋季高考第12题:“ 在等差数列an中,若0,则有等式+-n(n19,nN成立。类比上述性质,相应地:在等比数列中,若1, 则有等式_成立”。用有关等差数 列和等比数列概念和类比的方法,辩明等差数列和式两边元素下标的关系;运用类比的手段 ,将已知等差数列的性质拓展到等比数列的性质,无疑发现了解决上述问题的通道,这是一个创新的过程。类比的结论不一定都正确,对问题的质疑比单一的解题,其效果是不一样的。如在等差数列中, =+,则,成等差数列,能否类比到等比数列中,,也成比数列,许多学生可能会证明它是正确,但这结论恰恰是错误的(当2,公比q-1时,-0)。再如,2000年上海春季 高考题:设f(x)为定义在R上的偶函数,当x-1时,yf(x)的图象是经过点(-2,0),斜率 为 1的射线。又在yf(x)的图象中有一部分是顶点在(0,2),且过(-1,1)的一段抛物线,试 写 出f(x)的 表达式,并作出图象。高考结束以后就有学生问:抛物线是否仅二次函数的图象? 如果不是,那么它的解不唯一。通过对问题的变式引出新的问题进行探索。譬如,在求数列2n-1的前n项和时。可以引出数列和的前n项和,让学生进行充分的讨论,前一问题仍是等差数列的前n项和,但首项、公差都已经变化,认知上没有冲突,学生是可以解决的;后一问题如果学生不深入研究数列的通项公式,那么他就无法求此数列的前n项和.探 究等差数列相关知识,对学生而言应是创新性思维;如果再将产生的结论向等比数列联想,可使这种创新思维得到延伸,达到不断激发学生创新欲望之目的。二、 建立新的数学模型并应用于实践的能力数学问题来源于社会实际,又指导着人们的工作、学习。对不同的问题建立不同的数学模型 ,有利于学生参与社会实践、服务社会。如某商品的单价随时间而变化,假设A同学每次买a 元的商品,B同学每次买b件的商品,试比较A、B两同学同时购买该商品两次,谁较合算? 可以让学生带着上述问题进商场,同一商品在不同的商场价格可能是不一样的,组织两组学 生各自收集一下所需的数据,找到此商品在这两家商场内的单价分别为m元和n元(把随时间变 化转化为随商场而变化),分别计算出A,B同学两次购买这商品的平价价格2a和bm+bn,建立不等式作差,得A平均-B平均2mn-m+n(m-n)20,就能说明谁更合算,质疑是否为整数,上述解答是否最合理。再如上网费与上网时间的关系也可以让学生上电信局去采集相关的数据。通过实践培养学生收集信息,分析处 理信息和实际问题数学模型化的能力。问题一、二可以分别建立不等式和函数的数学模型来解决。又比如2003年上海春季高考第22 题是有关工资问题,可以建立等差、等比数列的数学模型。这些问题都有各自的实际背景, 要解决这些问题,除了要熟悉有关的实际背景,更关键的是要通过审题、的实际背景, 要解决这些问题,除了要熟悉有关的实际背景,更关键的是要通过审题、分析建立相应的数 学模型,利用已有的数学知识、数学思想方法、计算工具来解决相关的实际问题,体验数学 模型化的价值,同时培养了学生实践和创新能力。数学来源社会实践,又服务于社会实践, 创新能力型问题很多,要求有高有低,我们不能要求学生一一掌握,但让他们知道这些问题 共同的特点,探求问题解决的一般方法。 高中数学中创新方法可以归纳为以下几类:从特殊到一般、从一般到特殊、联想与类比、建模、化归与转化、引申与拓展等。在数学教学中,教师要特别注意培养学生根据题中具体条件,自觉、灵活地运用数学思想方法,根据不同的类型探索出一般的规律;在教学过程中, 通过变换不同思考角度,就可以发现新方法、新问题,制定新策略、解决新问题。学生数学创新能力的培养贯穿于整个数学课堂教学过程中,要不失时机地让 学生进行类比、推广、探究、质疑,培养学生的数学创新能力、发展学生的一般能力,为终 身学习打下扎实的基础。
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 工作计划


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!