资源描述
第1章 塑料成型工艺性分析1.1 塑件的分析(1)外形尺寸 如图1.1所示,该塑件壁厚为3mm,塑件外形尺寸不大,塑料熔体流程不太长,塑件材料为热塑性塑料,流动性较好,适合于注射成型。(2)精度等级 任务书中塑件未注公差,已说明未注公差为MT5,可查参考书。(3)脱模斜度 PP的成型性能良好,化学稳定性较好,成型时收缩大,易变形翘曲。参考文献1表2-10选择塑件上的型芯与凹模的统一脱模斜度为1。(4)塑件尺寸如图1.1所示。 图1.1 塑件尺寸1.2 PP塑料的性能分析聚丙烯,是由丙烯聚合而制得的一种热塑性树脂。按甲基排列位置分为等规聚丙烯无规聚丙烯和间规聚丙烯三种。1)成型特性(1)物理性能:PP为无毒、无味的乳白色高结晶的聚合物,是目前所有塑料中最最轻的品种之一,对水特别稳定,在水中14h的吸水率仅为0.01%。分子量约815万之间,成型性好。但因收缩率大,原壁制品易凹陷,制品表面光泽好,易于着色。(2)力学性能:PP的结晶度高,结构规整,因而具有优良的力学性能,其强度和硬度、弹性都比高密度PE(HDPE)高。突出特点是抗弯曲疲劳性(7107)次开闭的折选弯曲而无损坏痕迹,干摩擦系数与尼龙相似,但在油润滑下不如尼龙。(3)热性能:PP 具有良好的 耐热性,熔点在164170,制品能在100以上温度进行消毒灭菌。在不受外力的作用下,150也不变形。脆化为-35,在低于-35会发生脆化,耐热性不如PE。2)成型工艺注塑机选用:对注塑机的选用没有特殊要求。由于PP具有高结晶性,需采用注射压力较高及可多段控制的电脑注塑机。锁模力一般按3800t/来确定,注射量20%-85%即可。干燥处理:如果储存适当则不需要干燥处理。熔化温度:PP的熔点为160-175,分解温度为350,但在注射加工时温度设定不能超过275。熔融段温度最好在240。模具温度:模具温度50-90,对于尺寸要求较高的用高模温,型芯温度比型腔温度低5以上。注射压力:采用较高注射压力(1500-1800bar)和保压压力(约为注射压力的80%)。大概在全行程的95%时转保压,用较长的保压时间。注射速度:为减少内应力及变形,应选择高速注射,但有些等级的PP和模具不适用(出现气泡、气纹)。如刻有花纹的表面出现由浇口扩散的明暗相间条纹,则要用低速注射和较高模温。流道和浇口:流道直径4-7mm,针形浇口长度1-1.5mm,直径可小至0.7mm。边形浇口长度越短越好,约为0.7mm,深度为壁厚的一半,宽度为壁厚的两倍,并随模腔内的熔流长度逐肯增加。模具必须有良好的排气性,排气孔深0.025mm-0.038mm,厚1.5mm,要避免收缩痕,就要用大而圆的注口及圆形流道,加强筋的厚度要小(例如是壁厚的50-60%)。均聚PP制造的产品,厚度不能超过3mm,否则会有气泡(厚壁制品只能用共聚PP)。熔胶背压:可用5bar熔胶背压,色粉料的背压可适当调高。制品的后处理:为防止后结晶产生的收缩变形,制品一般需经热水浸泡处理。详细的纯聚丙烯性能指标见表1.1。表1.1 聚丙烯的性能指标密度(kg/dm3)0.900.91抗拉屈服强度(MPa)5667比体v(dm3/kg-1)1.101.11拉伸弹性模量E1103MPa1.11.6收缩率S()1.03.0拉弯强度(MPa)67.5热变形温t()102115硬度(HB)R95105熔点t()170176体积电阻数( )10161.3 PP的注射成型过程及工艺参数1)注射成型过程(1)成型前的准备 对聚丙烯的色泽、粒度和均匀度等进行检验,聚丙烯成型前须进行干燥,处理温度为80度到100度,干燥时间1-2小时。(2)注射过程 塑料在注射机料筒内经过加热、塑化达到流动状态后,由模具的浇注系统进入模具的型腔成型,其过程可分为冲模、压实、保压、倒流和冷却五个阶段。(3)塑件的后处理(退火)。退火处理的方法为红外线灯、烘箱,处理温度为70度,处理时间是2-4小时。2)注射工艺参数(1)注射机:螺杆式,螺杆转速为48r/min。(2)料筒温度(t/):前段160-180;中段180-200;后段200-220。(3)模具温度(t/):80-90。(4)注射压力(p/Mpa):70-100。(5) 成型时间(/s):注射时间20-60;高压时间0-3;冷却时间20-90;总周期50-160。第2章 拟定模具的结构形式和初选注射机2.1 分型面位置的确定通过对塑件结构形式的分析,分型面的选择有图2.1与图2.2所示的两种方案 图2.1 方案1 图2.2 方案2分型面应选在利于开模取出塑件的平面即选择图2.2的方案2。2.2 型腔数目和排位方式的确定(1)型腔数量的确定 由于该塑件的精度要求不高,塑件的尺寸较小,且为大批量生产,可采用一模多腔的结构形式。同时,考虑到塑件的尺寸、模具结构的尺寸的关系,以及制造费用和各种成本的费用等因素,初步定为一模四腔结构形式。(2)型腔排列的形式的确定由于该模具选择的是一模四腔,故流道采用H形对称排列,使型腔进料平衡,如图2.3所示。(3)模具结构形式的初步确定图2.3 型腔数量的排列布置由以上分析可知,本模具设计为一模四腔,对称H型直线排列,根据塑件结构形状,推出机构初选推件板推出或推杆推出方式。浇注系统设计时,流道采用对称平衡式,浇口采用侧浇口,且开设在分型面上。因此,定模部分不需要单独开设分型面取出凝料,动模部分需要添加型芯固定板、支撑板或者推件板。由上综合分析可确定采用大水口(或者带推件板)的单分型面注射模。2.3注射剂型号的确定1)注射量的计算通过Pro/E建模分析得塑件质量属性如图2.3所示。塑件体积:V塑39.46cm3塑件质量:m塑=V塑=39.460.91=35.91g式中,可根据参考文献1表9-6取0.91g/cm32) 浇注系统凝料体积的初步计算 由于浇注系统的凝料在设计之前不能确定的数值,但是可以根据经验按照塑件提及的0.2倍1倍来估算。由于本次设计采用流道简单并且较短,因此浇注系统的凝料按塑件体积0.3倍来估算,故一次注入模具型腔塑料熔体的总体积(即浇注系统的凝料和4个塑件体积之和)为 V总=1.3nV塑=1.3439.46=205.20cm3图2.4 体积分析3) 选择注射机根据以上计算得出在一次过程中注入模具型腔的总体积为V总=205.20cm3,由参考文献1式(4-18)V公 =V总/0.8=205.20/0.8=256.49cm3。根据以上的计算,初步选择公称注射量300cm3,注射剂型号XZY-300卧式注射机,其主要技术参数参见表2.1表2.1 注射机主要技术参数理论注射量125cm3拉杆内向距260 360mm螺杆塞直径42mm移模行程300mm注射压力150MPa最大模具厚度300mm注射速率100g/s最小模具厚度200mm塑化能力16.8g/s锁模形式双曲肘螺杆转速0220r/min定位孔直径100mm锁模力9 喷嘴球半径12mm喷嘴孔直径4.5mm4)注射剂的相关参数的校核(1)注射压力校核 参考文献1表41可知,PP所需注射压力为70MPa100MPa,这里取p0=100Mpa,该注射机的公称注射压力p公=175MPa,注射压力安全系数k1 这里取1.251.4,这里取k1=1.3。 k1 p0=1.3100=130Mpap公,所以,注射剂注射压力合格。(2)锁模力校核 塑件在分型面上的投影面积 A塑=5050+302252=5170mm3浇注系统在分型面上的投影面积A浇,即浇道凝料(包括浇口)在分型面上的投影面积A浇数值,可以按照多型腔模具的统计分析来确定。A浇是每个塑件在分型面上的投影面积A塑的0.20.5倍。由于本设计的流道简单,分流道相对简单,因此流道凝料投影面积可以适当取小些。这里取A浇=0.2A塑。塑件和浇注系统在分型面上总的投影面积,则 A总=n(A浇+ A塑)=41.2 A塑=24816mm2模具型腔内的胀型力F胀,则 F胀=A总p模=2481625=620.34kN式中,p模是型腔的凭平均计算压力值。p模是模具型腔内的压力,通常取注射压力的20%40%,大致范围为25MPa40MPa。对于黏度较大的精度较高的塑料制品应取较大值。PP属中等黏度的塑料且塑件有精度要求,故p模取25MPa。由表2.1可知该注射机的公称锁模力1500kN锁模力安全系数为k2=1.11.2,这里取k2=1.2,则取k2F胀=1.2 F胀=1.2620.34N 所以注射机锁模力满足要求。对于其他安装尺寸的校核要等到模架选定,结构尺寸确定后方可进行。第3章 浇注系统的设计3.1 主流道的设计主流道通常位于建模中心塑料熔体的入口处,它将注射剂喷嘴注射出的熔体导入分流道或型腔中。主流道的形状为椭圆形。以便熔体的流动和开模时主流道凝料的顺利拔出。主流道的尺寸直接影响到熔体的流动速度和充模时间。另外,由于主流道与高温塑料熔体及注射机喷嘴反复接触,因此设计中常设计成可拆卸更换的浇口套。1)主流道的设计(1)主流道的长度。一般有模具结构确定,对于小型模具L应尽量小于60mm,本次设计中初取50mm进行计算。(2)主流道小端直径。d=注射机喷嘴尺寸+(0.51)mm=5.5mm。(3)主流道大端直径。D=d+L主tan=9mm,式中4。(4)主流道球面半径。SR=注射机喷嘴球头半径+(12)mm=18+2=20mm。2)主流道的凝料体积 V主=L主(R主2+r主2+ R主r主)/3=50(52+2.752+52.75) /3=2326.5mm23)主流道当量半径 Rn= =3.875mm4) 主流道浇口套的形式 主流道衬套为标准可选购。主流道小端入口处与注射机喷嘴反复接触,易磨损,对材料的要求较严格,因而尽管小型注射模可以将主流道衬套与定位圈设计成一个整体,但考虑上述因素通常任然将其分开来设计,以便于拆卸更换。同时也便于选用优质钢材进行单独加工和热处理。本设计中浇口套采用碳素工具钢T10A,热处理淬火表面硬度为50HRC55HRC。如图3.1所示。定位圈的结构由总装图来确定。3.2分流道的设计1)分流道的布置形式为了尽量减少在流道内的压力损失和尽可能避免熔体温度降低,同时还要考虑减少分流道的容积和压力平衡。因此采用平衡式分流道,如图3.2所示。2)分流道的长度根据四个型腔的结构设计,分流道长度适中,如图3.2所示图3.1 主流道浇口套的结构形式图3.2 分流道布置形式3)分流道的当量直径流过一级分流道塑料的质量 m=V塑=39.460.912=71.8g200g但该塑件壁厚在3mm4mm之间,按参考文献2图2-3的经验曲线查得D=5.2,再根据单向分流道长度60mm由参考文献2图2-5查得修正系数fL=1.05,则分流到执行经修正后为 D= DfL=5.21.055.5mm4) 分流道的截面形状本设计采用梯形截面,其加工工艺性好,且塑料熔体的热量散失,流动阻力均不大。5) 分流道界面尺寸设梯形的上底宽度为B=6mm(为了便于选择道具),底面圆角的半径R=1mm,梯形高度取H=2B/3=4mm,设下底宽度为b,梯形面积应满足如下关系式。 H= D2代值计算得b=3.813mm,考虑到梯形地步圆弧对面积的减小及脱模斜度等因素,取b=4.5mm。通过计算梯形斜度=10.6,基本符合要求,如图3.3所示。6) 凝料体积图3.3 分流道截面形状(1) 分流道的长度为 L分=(55+7.5+42.5)2=210(2) 分流道截面积 A分= 4=21mm2(3) 凝料体积 V分=L分A分=21021=4410mm3=4.41cm3考虑到圆弧的影响取V分=4.2cm37) 校核剪切速率(1)确定注射时间:参考文献2表2-3,可取t=1.6s。(2)计算单边分流道体积流量 q分= = =33.67cm3/s (3)参考文献2式(2-22)可得剪切速率 分= = =1.701103 s-1该分流道的剪切速率处于浇口主流道与分流道德最佳剪切速率在5102 s-1 5103 s-1之间,所以,分流道内熔体的剪切速率合格。8)分流道的表面粗糙度和脱模斜度分流道的表面粗糙度要求不是很低,一般取Ra1.25m2.5m即可。此处取Ra1.6m。另外其脱模斜度一般在510,通过上述计算脱模斜度为10.6,脱模斜度足够。3.3浇口的设计该塑件要求不允许有裂纹和变形缺陷,表面质量要求较高,采用一模四腔注射,为便于调增冲模时间的剪切速率和封闭时间美因茨采用侧浇口。其界面形状简单,易于加工,便于试模后修正,且开设在分型面上,从型腔边缘进料。1)侧浇口尺寸的确定(1)计算侧浇口的深度。根据参考文献2表2-6,可得侧浇口的深度h计算公式为 h=nt=0.73=2.1mm式中:t为塑件壁厚,这里t=3mm;n为塑料成型系数,对于PP,其成型系数取n=0.7。为了便于今后试模时间发现问题进行修模处理,并根据参考文献1表4-9中推荐的PP侧浇口的厚度为1.5mm3mm,故此处浇口深度h取0.7mm。(2)计算侧浇口的宽度。根据参考文献2表2-6,可得侧浇口的宽度B的计算公式为 B= = =2.73mm 其中内表面积A=5050+3.14302+(50+50+23.1430)=13978mm2 式中:n为塑料成型系数,对于PP取0.7;A为凹模的内表面积(约等于塑件的外表面积)。(3)计算侧浇口的长度。根据参考文献2表2-6,可取侧浇口的长度L浇=0.75mm。2)侧浇口剪切速率的校核(1)确定注射时间:查参考文献2表2-3,可取t=2.5s;(2)计算浇口的体积流量 q浇= = =15.78cm2/s(3)计算交口的剪切速率:对于矩形浇口可得= 4104s-1; 分= = 3.44103 s-14104s-1 式中:Rn为矩形交口的当量半径,即Rn= = =0.07cm 该矩形侧浇口的剪切速率比较大,首先把浇口面积适当做小一点,通过试模根据塑件成型情况来调整。3.4校核主流道的剪切速率上面分别求出了塑件的体积,主流道的体积,分流道的体积(浇口的体积大小可以忽略不计)以及主流道的当量半径,这样就可以校核主流道熔体的剪切速率。1)计算主流道德体积流量 q分= = =65.44cm3/s2) 计算主流道德剪切速率 分= = =2.246103s-1主流道的剪切速率处于浇口与分流道的最佳剪切速率5102s-15103s-1之间,所以,主流道的剪切速率合格。3.5冷料穴的设计及计算冷料穴位于主流道正对面的模板上,其作用是储存熔体前锋的冷料,防止冷料模具型腔而影响制品的表面质量。本设计既有主流道冷料穴又有分流道冷料穴。由于该塑件表面要求没有印痕,初定采用脱模板推出塑件,故采用与Z字形拉料杆匹配的冷料穴。开模时,利用凝料对Z字头的拉力使凝料从主流道衬套中脱出。第4章 成型零件的结构设计及计算4.1成型零件的结构设计(1)凹模的结构设计 凹模是成型制品的外表面的成型零件。按凹模结构的不同可将其分为整体式、整体嵌入式、组合式和镶拼式四种。根据对苏建德结构分析,本设计采用整体嵌入式凹模。 图4.2 凸模结构(2)凸模的结构设计(型芯) 凸模是成型塑件内表面的成型零件,通常可以分为整体式和组合式两种类型。该塑件采用整体式型芯,如图4.2所示,因塑件的包紧力,所以设在动模部分。4.2成型零件钢材的选用根据对成型塑件的综合分析,该塑件的成型零件要有足够的刚度、强度、耐磨性及良好的抗疲劳性,同时考虑他的机械加工性能和抛光性能。又因为该塑件为大批量生产,所以构成型腔的嵌入式凹模钢材选用P20。对于成型零件内表面的型芯来说,由于脱模时与塑件的磨损严重,因此钢材选用P20钢。进行渗氮处理。4.3成型零件工作尺寸的计算采用参考文献1式(2-26)式(2-30)相应公式中的平均尺寸法计算成型零件尺寸,塑件尺寸公差按照塑件零件图中给定的公差计算。(1) 凹模径向尺寸的计算 塑件外部径向尺寸的转换: 相应的塑件制造公差1=0.64mm 相应的塑件制造公差2=0.50mm 式中:Scp为塑件的平均收缩率,查参考文献2表6-1可得PP的收缩率为1%3%,所以其平均收缩率 ,1、2为系数,查参考文献2表2-10可知1=0.7,2=0.65;1、2分别是塑件上相应尺寸的公差(下同); 是塑件上相应尺寸制造公差,对于中小型塑件取(下同)。 (2) 凹模深度尺寸的计算 塑件高度方向尺寸的换算:塑件高度的最大尺寸Hs1=300.42=30.42 。 式中:1为系数,由参考文献2表2-10可知1=0.65(3) 型芯径向尺寸计算 塑件内部径向尺寸的转换: 相应的塑件制造公差s1=0.64mm 相应的塑件制造公差s2=0.50mm 式中1、为系数,查参考文献2表2-10取1=0.7、=0.6(4) 型芯高度尺寸计算 塑件内腔高度尺寸转换: 相应的塑件制造公差1=0.58mm 式中14为系数,查参考文献2表2-10取1=0.55(5) 型芯径向尺寸10的计算 相应的塑件制造公差3=0.28mm (6) 成型孔的高度 210的成型芯是与凹模碰穿,所以高度应取正公差,以利于修模。(7) 成型孔间距计算 塑料凹模嵌件及型芯的成型尺寸的标注见零件图所示。4.4成型零件尺寸及动模垫板厚度的计算(1)凹模侧壁厚度的计算主要考虑其强度,因此在此只做强度计算,凹模侧壁厚度与型腔内压强及凹模的深度有关,其厚度根据本节参考文献1表4-19中强度公式计算。 式中:p为型腔压力(MPa)在第2章已求得为25MPa;h=W,W为影响变形的最大尺寸,而h=20mm;p为模具强度计算许用应力,取预硬化刚300MPa。 凹模嵌件初定单边厚选15mm。壁厚满足要求。根据型腔的布置,初步计算模板平面尺寸选用300mm300mm,它比型腔的尺寸大得多,所以完全满足强度和刚度要求。(2)动模垫板厚度的计算根据本节参考文献1表4-19中强度公式计算 式中:为模具强度计算许用应力,取预硬化刚300MPa。p为型腔压力(MPa)在第2章已知为25MPa;b为型腔宽度。 动模垫板可按照标准厚度取45mm,显然符合要求。第5章 脱模推出机构的计算 本塑件结构简单,可采用推件板推出、推杆推出、或推件板加推杆的综合推出方式。根据脱模力计算来决定。5.1脱模力的计算(1)主型脱模力 型芯是矩形与两半圆组成,可视为矩形来算。因为 ,所以此处视为薄壁圆筒塑件,根据本节参考文献1式4-26脱模力为 其中, (2)2-10小型芯脱模力 因为 ,所以是厚壁圆筒的受力状态,根据本节参考文献1式4-26脱模力为 =1023.8N 其中, 式中 E 塑料的拉伸弹性模量(MPa)取1.1103MPa; S 塑料成型的平均收缩率(%)为2%; t 塑件的壁厚(mm)为3mm; L 被包型芯长度(mm)为17mm; 塑料的泊松比为0.33; 脱模斜度()为1; f 塑料与钢材之间的摩擦因数取0.4; r 型芯的平均半径(mm)为3mm; A 塑件在与开模方向垂直的平面的投影面积(mm2); 由和决定的无因次数 ; 由f 和决定的无因次数 ;(3) 总脱模力 F=F1+F2=5080+1023.8=6103.8N5.2推出方式的确定1)采用推出杆推出(1)推出面积 设8mm的圆杆设置2根,那么推出面积为 (2) 推杆推出应力 根据表2-12取许用应力= 12MPa 通过上述计算,应力偏大,推出时有顶白或顶破的可能(在生产实践中,这类简 单非透明塑件,一般还是采用推杆推出),为安全起见,在此不采用推杆推出。 2)采用推件板推出(1) 推件板推出时的面积 (2) 推件板推出应力 通过计算,应力满足要求,但考虑到变形,采用推板推出的同时采用一根推杆进行脱模,以保证塑件质量。 推件板推出时为了减少推件板与型芯的摩擦,设计时在推件板与型芯之间留出0.2mm的间隙并采用锥面配合。 本设计采用侧浇口,充模时容易形成封闭气囊,型芯上设置1根直径8mm的推杆,同时利于供排气,另外推出更加平稳。第6章 模架的确定 根据模具型腔布局的中心距和凹模嵌件的尺寸可以算出凹模嵌件所占的平面尺寸为220mm160mm,型腔所占平面尺寸为190mm130mm,利用经验公式(7-1)进行计算,即W3=W+10=190+10=200mm,查参考文献2表7-4得W=350mm,因此需采用350mm350mm的模架。但又考虑是采用推件板和推杆综合方式,且推杆布置在靠近凸模的中心,这样推杆边缘与推杆固定板边缘距离较大,因此为降低模具成本可适当减少模具架尺寸,同时又考虑到导柱、导套、水路的布置等因素,根据参考文献2表7-1可确定选用带推件板的直浇口B型模架,查参考文献2表7-4得WL=300mm300mm及各板的厚度尺寸。6.1各模板尺寸的确定(1) A板尺寸 A板是定模板型腔板,塑件高度为20mm,考虑到模板上还要开设冷却水道,还需留出足够的距离,故A板厚度取50mm。(2) B板尺寸 B板是型芯固定板,按模架标准板厚度取40mm。(3) C板尺寸垫块=推出行程+推板厚度+推杆固定板厚度+(510)mm=(20+25+20+510)mm=70mm75mm,初步选定C为80mm经上述尺寸计算,模架尺寸已经确定,标记:C3030-504080GB/T 12555-2006。其他尺寸按标准标注,如图6.1所示。 图6.1 B型模架结构6.2模架各尺寸的校核根据所选注射机来校核模具设计的尺寸。(1) 模具平面尺寸350mm300mm400mm300mm(拉杆间距),模具从一侧吊如,校核合格。(2) 模具高度尺寸295mm,285mm295mm355mm(模具的最大厚度和最小厚度),校核合格。(3)模具的开模行程S=推出距离+包括浇注系统的塑件的高度开模行程S=20mm+71mm340mm,校验合格。第7章 排气槽和冷却系统的设计7.1 排气槽的设计该塑件由于采用侧浇口进料熔体经塑件下方的台阶上向上充满型腔,每个型芯上有1根推杆,其配合间隙可作为气体排出方式,不会在顶部产生憋气现象。同时,底面的气体会沿着分型面,型芯和推板件之间的间隙向外排出。7.2冷却系统的设计 冷却系统的设计很麻烦,在此只进行简单的计算。设计时忽略模具因空气对流,辐射以及与注射机接触所散发的热量,按单位时间内塑料熔体凝固时所散发的热量应等于冷却水所带走的热量。 PP属流动性中等的材料,其成型温度及模具温度分别为220和8090,热变形温度为100。所以模具的温度初步选定为50,用常温水对模具进行冷却。冷却系统的简单计算1)单位时间内注入模具中的塑料熔体的总质量W(1)塑料制品的体积 (2)塑料制品的质量 (3)塑件壁厚为t=3mm,查参考文献1表4-34得 。取注射时间,脱模时间 ,则注射周期 。由此得每小时注射次数N=120次。(4)单位时间内注入模具中的塑料熔体的总质量: 。2)确定单位质量的塑件在凝固时所放出的热量 查参考文献1表4-35直接可知PP的单位热流量的值 。3)计算冷却水的体积流量 设冷却水道入水口的水温为 ,出水口的水温为 ,取水的密度 ,水的比热容 ,则根据公式可得: 4)确定冷却水路的直径d当 ,查参考文献1表4-30可知,为了使冷却水处于湍流状态,取模具冷却水孔的直径d=8mm。5)冷却水在管内的流速 6)求冷却管壁与水交界面的膜转热系数因为平均水温为23.5,查参考文献1表4-31可得 ,则有 7) 计算冷却水通道的导热总面积 8)计算模具冷却水管的总长度 9)冷却水路的根数 设每条水路的长度 ,则冷却水路的根数为 由上述计算可以看出,一条冷却水道对于模具来说显然已经足够了,为了使效果更好本设计中采用定模两条冷却水道对型芯和凹模嵌件进行冷却,成型零件的冷却水道开设见零件图。第8章 导向与定位结构的设计注射模的导向机构用于动定模之间的开合模导向和脱模机构的运动导向。按作用分为模外定位和模内定位。模外定位是通过定位圈与注射机配合,使模具的浇口套能与注射机喷嘴精确定位;而模内定位机构则通过导柱导套进行合模定位。锥面定位则用于动定模之间的精密定位。本模具所成型的塑件比较简单,模具定位精度要求不是很高,因此采用模架本身所带的定位机构。 结 论课程设计即将结束了,在这段时间里受益非浅。在刚拿到这个课题时,的确心里很没底,经过几天的认真分析和查有关资料才有了点头绪。随着对零件图的全面理解,设计工作也全面展开,在本次设计过程中我也大量查阅了与此次设计的有关课程书:如机械制图、塑料模具设计与制造、数控机床等。在设计过程中只凭教科书是不够的,我还大量查看一些有关设计的参考书和资料。从中也使自己能更好的掌握自动编程,为以后的工作奠定了更坚实的基础。本课程是核心专业课程之一,主要讲授塑料模具的设计流程和模具结构,塑料的特性和成型原理、掌握模具的合模和开模动作、塑料件模具结构设计等。通过本课程的学习,掌握塑料的基本概念、热塑料的成形加工性能、热塑料制品设计的基本原则,注射成型模具的基本结构及分类、注射成型模具零部件的设计、浇注系统设计等知识,能够完成塑料模具的设计任务以及维护等。这次设计课程,实现了理论与实践的结合,使我懂得一些课堂上学不到的知识,为今后的学习和工作打下坚实的基础。参考文献1 叶久新,王群塑料成型工艺及模具设计北京:机械工业出版社。2007。2 伍先明,王群塑料模具设计指导北京:国防工业出版社。2007。4 李冰辉,邓志久模具工程技术基础北京:北京理工大学出版社。2009。10 冯炳尧模具设计与制造简明手册上海:上海科学技术出版社。1985。11 李学锋塑料模具设计与制造北京:机械工业出版社。2002。12 何忠保典型零件模具图册北京:机械工业出版社。2000。
展开阅读全文