资源描述
景泰四中 王兰朝学习目标:学习目标:1 :会解简单的一元一次不等式,并能在数轴上表示其解集。 2:经历一元一次不等式的形成过程,通过类比理解一元一次不等式的解法。情感与态度:通过一元一次不等式的学习,提高学生的自主学习能力,激发学生的探究兴趣。教学重点教学重点:掌握简单的一元一次不等式的解法,并能将解集在数轴上表示出来。教学难点教学难点:一元一次不等式的解法。 1、不等式的三条基本性质是什么? 2、什么叫一元一次方程?解一元一次方程的步骤是什么?温故互查观察下列不等式观察下列不等式(1)2x-2.51.5(1)2x-2.51.5(3)x4(3)x240(4)5+3x240这些不等式有哪些共同特点?这些不等式有哪些共同特点?这些不等式的左右两边都是整式,只含有一个未知数,这些不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是像这样的不等式,叫做一元一并且未知数的最高次数是像这样的不等式,叫做一元一次不等式(次不等式(linearinequalitylinearinequality with one unknown). with one unknown).判断条件判断条件: :1.1.未知数的个数未知数的个数. .2.2.未知数的次数未知数的次数. .3.3.不等式两边都是整式不等式两边都是整式. .探究1:一元一次不等式的定义下列不等式下列不等式, ,哪些是一元一次不等式哪些是一元一次不等式? ?(1) 2x-31(1) 2x-31(2) 5x+25x-3(2) 5x+25x-3(3) x(3) x2 2+1x+2+1x+2(4) y0(4) y0(5) x+y(5) x+y1+ xx 解不等式并把它的解集表示在数轴上解不等式并把它的解集表示在数轴上解方程的移项解方程的移项变形对于解不变形对于解不等式同样适用等式同样适用. .探究2:解一元一次不等式的步骤 1.1.你能利用不等式的基本性质解决吗?试一试。你能利用不等式的基本性质解决吗?试一试。 2.2.在解不等式的过程中是否有与解一元一次方程类在解不等式的过程中是否有与解一元一次方程类似的步骤?能否归纳解一元一次不等式的基本步骤?似的步骤?能否归纳解一元一次不等式的基本步骤? 3.3.在解一元一次不等式的步骤中,应注意什么?在解一元一次不等式的步骤中,应注意什么? 。xx上并把它的解表示在数轴解不等式,3722)()(xx, 7 72 22 23 3得得解解去去分分母母xx,2 21 14 46 63 3 得得去去括括号号205x,得合并同类项移项4 45 5 x,得得两边都除以两边都除以:轴轴上上表表示示如如下下图图这这个个不不等等式式的的解解集集在在数数 -2 -1 0 1 2 3 4 5 6 7 8 9 10练一练4138132yy)(解:去分母,得解:去分母,得移项,合并同类项,得移项,合并同类项,得系数化为系数化为1 1,得,得去括号,得去括号,得)()(1231382yy2233316yy185y518y解下列不等式解下列不等式, ,并把它们的解集分别表示在数轴上并把它们的解集分别表示在数轴上 (1) x42(x+2)3 32 21 12 2+)(x35421)3(xx123x35x(4); 小组展示、点评小组展示、点评3xy2、求不等式求不等式4(4x+1)24的正整数解的正整数解。拓展提升拓展提升3、若(k-1)xk2+30是关于X的一元一次不等式,求k的值1.1.一元一次不等式的定义一元一次不等式的定义. .2.2.一元一次不等式的解法一元一次不等式的解法. .3.3.一元一次不等式特殊解的解法一元一次不等式特殊解的解法. .作业作业:P14:P14的习题的习题1.41.4
展开阅读全文