北师大版八年级数学下册 第六章 平行四边形 6.4 多边形的内角和与外角和 教案

上传人:xins****2008 文档编号:29452575 上传时间:2021-10-07 格式:DOC 页数:5 大小:40KB
返回 下载 相关 举报
北师大版八年级数学下册 第六章 平行四边形 6.4 多边形的内角和与外角和 教案_第1页
第1页 / 共5页
北师大版八年级数学下册 第六章 平行四边形 6.4 多边形的内角和与外角和 教案_第2页
第2页 / 共5页
北师大版八年级数学下册 第六章 平行四边形 6.4 多边形的内角和与外角和 教案_第3页
第3页 / 共5页
点击查看更多>>
资源描述
6.4 多边形的内角和与外角和【教学目标】【知识与技能】掌握多边形内角和定理与外角和定理,进一步了解转化的数学思想.【过程与方法】经历质疑、猜想、归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法.【情感态度】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造.【教学重点】1、 多边形内角和、外角和定理的探索和应用.2、 理解多边形内角和公式的推导过程,并掌握多边形的内角和与外角和公式;【教学难点】1、灵活运用多边形的内角和与外角和定理解决有关问题2、多边形定义的理解;多边形内角和公式的推导;转化的数学思维方法的渗透.【教学过程】一、情境导入(一)回答问题1三角形是如何定义的?2仿照三角形定义,你能学着给四边形.五边形n边形下定义吗?3结合图形认识多边形的顶点、边、内角及对角线.【教学说明】对概念分析和归纳,培养学生的口头表达能力和语言组织能力,同时渗透类比思想.(二)思考问题多媒体演示:清晨,小明沿一个多边形广场周围的小路按逆时针方向跑步提出问题:(1)小明是沿着几边形的广场在跑步?(2)你知道这个多边形的各部分的名称吗?(3)你会求这个多边形的内角和吗?导入:小明每从一条小路转到下一条小路时,身体总要转过一个角,你知道是哪些角吗?你知道它们的和吗?就让我们带着这些问题同小明一起走进今天的课堂二、合作探究探究点一:多边形的内角和定理【类型一】 利用内角和求边数 一个多边形的内角和为540,则它是()A四边形 B五边形C六边形 D七边形解析:熟记多边形的内角和公式(n2)180.设它是n边形,根据题意得(n2)180540,解得n5.故选B.方法总结:熟记多边形的内角和公式是解题的关键【类型二】 求多边形的内角和 一个多边形的内角和为1800,截去一个角后,得到的多边形的内角和为()A1620 B1800C1980 D以上答案都有可能解析:180018010,原多边形边数为10212.一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1,新多边形的边数可能是11,12,13,新多边形的内角和可能是1620,1800,1980.故选D.方法总结:一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1.根据多边形的内角和公式求出原多边形的边数是解题的关键【类型三】 复杂图形中的角度计算 如图,1234567()A450 B540C630 D720解析:如图,3489,12345671289567540,故选B.方法总结:本题考查了灵活运用五边形的内角和定理和三角形内外角关系根据图形特点,将问题转化为熟知的问题,体现了转化思想的优越性【类型四】 利用方程和不等式确定多边形的边数 一个同学在进行多边形的内角和计算时,求得内角和为1125,当他发现错了以后,重新检查,发现少算了一个内角,问这个内角是多少度?他求的是几边形的内角和?解析:本题首先由题意找出不等关系列出不等式,进而求出这一内角的取值范围;然后可确定这一内角的度数,进一步得出这个多边形的边数解:设此多边形的内角和为x,则有1125x1125180,即180645x180745,因为x为多边形的内角和,所以它是180的倍数,所以x18071260.所以729,12601125135.因此,漏加的这个内角是135,这个多边形是九边形方法总结:解题的关键是由题意列出不等式求出这个少算的内角的取值范围探究点二:多边形的外角和定理【类型一】 已知各相等外角的度数,求多边形的边数 正多边形的一个外角等于36,则该多边形是正()A八边形 B九边形C十边形 D十一边形解析:正多边形的边数为3603610,则这个多边形是正十边形故选C.方法总结:如果已知正多边形的一个外角,求边数可直接利用外角和除以这个角即可【类型二】 多边形内角和与外角和的综合运用 一个多边形的内角和与外角和的和为540,则它是()A五边形 B四边形C三角形 D不能确定解析:设这个多边形的边数为n,则依题意可得(n2)180360540,解得n3,这个多边形是三角形故选C.方法总结:熟练掌握多边形的内角和定理及外角和定理,解题的关键是由已知等量关系列出方程从而解决问题三、板书设计多边形的内角和与外角和1性质:多边形的内角和等于(n2)180,多边形的外角和等于360.2多边形的边数与内角和、外角和的关系:(1)n边形的内角和等于(n2)180(n3,n是正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180.(2)多边形的外角和等于360,与边数的多少无关.3.正n边形:正n边形的内角的度数为,外角的度数为.四、教学反思本节课先引导学生用分割的方法得到四边形内角和,再探究多边形的内角和,然后采用完全开放的探究,每步探究先让学生尝试,把学生推到主动位置,放手让学生自己学习,教学过程主要靠学生自己去完成,尽可能做到让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新要充分体现学生学习的自主性:规律让学生自主发现,方法让学生自主寻找,思路让学生自主探究,问题让学生自主解决.本节课的设计突出对多边形的内角和、外角和公式的探究与推导过程,探究过程既有类比的方法,又有承接多边形内角和的新方法;既是新知识的学习过程,又是旧知识的拓展过程.相信这样的设计一定能够达到教学目标的三个维度的要求.另外,可以考虑增加一些课堂中的习题量,以帮助学生巩固新知识.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 小学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!