高中物理竞赛辅导相对论初步知识 有关量子的初步知识基本粒子

上传人:仙*** 文档编号:28079298 上传时间:2021-08-23 格式:DOC 页数:32 大小:498KB
返回 下载 相关 举报
高中物理竞赛辅导相对论初步知识 有关量子的初步知识基本粒子_第1页
第1页 / 共32页
高中物理竞赛辅导相对论初步知识 有关量子的初步知识基本粒子_第2页
第2页 / 共32页
高中物理竞赛辅导相对论初步知识 有关量子的初步知识基本粒子_第3页
第3页 / 共32页
点击查看更多>>
资源描述
相对论初步知识相对论是本世纪物理学的最伟大的成就之一,它标志着物理学的重大发展,使一些物理学的基本概念发生了深刻的变革。狭义相对论提出了新的时空观,建立了高速运动物体的力学规律,揭露了质量和能量的内在联系,构成了近代物理学的两大支柱之一。2. 1 狭义相对论基本原理2、1、1、伽利略相对性原理1632年,伽利略发表了关于两种世界体系的对话一书,作出了如下概述:相对任何惯性系,力学规律都具有相同的形式,换言之,在描述力学的规律上,一切惯性系都是等价的。这一原理称为伽利略相对性原理,或经典力学的相对性系原理。其中“惯性系”是指凡是牛顿运动定律成立的参照系。2、1、2、狭义相对论的基本原理19世纪中叶,麦克斯韦在总结前人研究电磁现象的基础上,建立了完整的电磁理论,又称麦克斯韦电磁场方程组。麦克斯韦电磁理论不但能够解释当时已知的电磁现象,而且预言了电磁波的存在,确认光是波长较短的电磁波,电磁波在真空中的传播速度为一常数,并很快为实验所证实。从麦氏方程组中解出的光在真空中的传播速度与光源的速度无关。如果光波也和声波一样,是靠一种媒质(以太)传播的,那么光速相对于绝对静止的以太就应该是不变的。科学家们为了寻找以太做了大量的实验,其中以美国物理学家迈克耳孙和莫雷实验最为著名。这个实验不但没能证明以太的存在,相反却宣判了以太的死刑,证明光速相对于地球是各向同性的。但是这却与经典的运动学理论相矛盾。爱因斯坦分析了物理学的发展,特别是电磁理论,摆脱了绝对时空观的束缚,科学地提出了两条假设,作为狭义相对论的两条基本原理:1、狭义相对论的相对性原理在所有的惯性系中,物理定律都具有相同的表达形式。这条原理是力学相对性原理的推广,它不仅适用于力学定律,乃至适合电磁学,光学等所有物理定律。狭义相对论的相对性原理表明物理学定律与惯性参照系的选择无关,或者说一切惯性系都是等价的,人们不论在哪个惯性系中做实验,都不能确定该惯性系是静止的,还是在作匀速直线运动。2、光速不变原理在所有的惯性系中,测得真空中的光速都等于c,与光源的运动无关。迈克耳孙莫雷实验是光速不变原理的有力的实验证明。事件 任何一个现象称为一个事件。物质运动可以看做一连串事件的发展过程,事件可以有各种具体内容,如开始讲演、火车到站、粒子衰变等,但它总是在一定的地点于一定时刻发生,因此我们用四个坐标(x,y,z,t)代表一个事件。间隔 设两事件()与(),我们定义这两事件的间隔为高中物理竞赛原子物理学教程第二讲相对论初步知识间隔不变性 设两事件在某一参考系中的时空坐标为()与(),其间隔为在另一参考系中观察这两事件的时空坐标为()与(),其间隔为由光速不变性可得这种关系称为间隔不变性。它表示两事件的间隔不因参考系变换而改变。它是相对论时空观的一个基本关系。2、1、3、相对论的实验基础斐索实验 上世纪人们用“以太”理论来解释电磁现象,认为电磁场是一种充满整个空间的特殊介质“以太”的运动状态。麦克斯韦方程在相对以太静止的参考系中才精确成立,于是人们提出地球或其他运动物体是否带着以太运动?斐索实验(1851年)就是测定运动媒质的光速实验。其实验装置如图21所示;光由光源L射出后,经半透镜P分为两束,一束透过P到镜,然后反射到,再经镜到P,其中一部分透过P到目镜T。另一束由P反射后,经镜、和再回到P时,一部分被反射,亦到目镜T。光线传播途中置有水管,整个装置是固定于地球上的,当管中水不流动时,两光束经历的时间相等,因而到达目镜中无位相差。当水管中的水流动时,两M2M3TLM1P图2-1-1束光中一束顺水流传播,一束逆水流传播。设水管的长度皆为l,水的流速为v,折射率为n,光在水中的速度为。设水完全带动以太,则光顺水的传播速度为,逆水为;若水完全不带动以太,光对装置的速度顺逆水均为;若部分被带动,令带动系数(曳引系数)为k,则顺水为,逆水为,k 多少由实验测定,这时两束光到达目镜T的时差为 斐索测量干涉现象的变化,测得,所以光在介质参考系中的传播速度为 式中是光线传播方向与介质运动方向间的夹角。现在我们知道,匀速运动介质中的光速可由相对论的速度合成公式求得,设介质(水)相对实验室沿X轴方向以速度v运动,选系固定在介质上,在上观察,介质中的光速各方向都是,所以光相对实验室的速度u为MSTM1M2 图2-1-2。由此可知,由相对论的观点,根本不需要“以太”的假说,更谈不到曳引系数了。迈克尔孙莫来实验 迈克尔孙莫来于1887年利用灵敏的干涉仪,企图用光学方法测定地球的绝对运动。实验时先使干涉仪的一臂与地球的运动方向平行,另一臂与地球的运动方向垂直。按照经典的理论,在运动的系统中,光速应该各向不等,因而可看到干涉条纹。再使整个仪器转过900,就应该发现条纹的移到,由条纹移动的总数,就可算出地球运动的速度v。迈克尔孙莫来实验的装置如图2-1-2所示,使一束由光源S射来的平行光,到达对光线倾斜450角的半镀银镜面M上,被分成两束互相垂直的相干光。其中透射部分沿方向前进,被镜反射回来,到M上,再部分地反射后沿MT进行;反射部分沿方行进行,被镜反射回来后再到达M上,光线部分透过,也沿MT进行。这两束光在MT方向上互相干涉。而在T处观察或摄影,由于臂沿着地球运动方向,臂垂直于地球运动方向,若= =,地球的运动速度为v,则两束光回到M点的时间差为当仪器绕竖直轴旋转900角,使变为沿地球运动方向,垂直于地球运动方向,则两束光到达M的时差为我们知道,当时间差的改变量是光波的一个周期时,就引起一条干涉条纹的移动,所以,当仪器转动900后,在望远镜T处看到的干涉条纹移动的总数为,zzutyyOOP(x,y,z)(x,y,z)图2-2-1式中是波长,当l=11米,所用光波的波长则N0.4,这相当于在仪器旋转前为明条纹,旋转以后几乎变为暗条纹。但是他们在实验中测得N,而且无论是在白天、夜晚以及一年中的所有季节进行实验,始终得到否定的结果,就是说光学的方法亦测不出所在参考系(地球)的运动状态。2、2 伽利略变换2、2、1伽利略变换(1) 如图2-2-1所示,有两个惯性系S和, 它们对应的坐标轴相互平行,且当t=0时,两系的坐标原点与O重合。设系相对于S系沿x轴正方向以速度运动。 同一质点P在某一时刻在S系中的时空坐标为(x,y,z,t),在S系中的时空坐标为 (x,y,z,t) 即 或 (1)x=x 即 式(1)称为伽利略时空坐标变换公式。()将式(1)中的空间坐标分别对时间求一次导数得:即或即 (2)式(2)称为伽利略速度变换公式。(3)将式(2)再对时间求一次导数得 即 (3)式(3)表明在伽利略变换下加速度保持不变。式(3)称为伽利略加速度变换公式。2、2、2 经典力学的时空观(1) t=,或t= (4)(2) =,=。因 (5)式(4)表明:在伽利略变换下,任何事件所经历的时间有绝对不变的量值,而与参照系的选择(或观测者的相对运动)无关。式(5)表明:在伽利略变换下,空间任何两点间的距离也有绝对不变的量值,而与参照系的选择测得的同一事件的时间间隔和空间任意两点间的距离都是绝对的不变量。这就是经典力学的时空观或者称之为绝对时空观。用牛顿本人的话来说:“绝对的真实的数学时间,就其本质而言,是永远均匀地流逝着,与任何外界事物无关。”“绝对空间就其本质而应是与任何外界事物无关的,它从不运动,并且永远不变。”按照这种观点,时间和空间是彼此独立、互不相关,并且独立于物质和运动之外的某种东西。2、2、3、力学规律在伽利略变换下的不变性(1)伽利略变换下的牛顿第二定律在s 系中,在系中, (6)(2)伽利略变换下的质点动量定理 在s系中, 在s系中, (7)(3)伽利略变换下的质点动能定理在s系中,在s系中, (8)(4)伽利略变换下的功的公式在s系中,在s系中, (9)若为质点所受的合外力,则有 (10)(5)伽利略变换下的动量守恒定律 在s系中,若对两个而点组成的封闭系统的一维动量传递问题则有在s系中,若 (11) (6)伽利略变换下的机械能守恒定律在s系中,在s系中, (12)综上所述,力学规律在伽利略变换下具有不变性。即力学规律在不同的惯性参照系中具有相同的形式,是规律的形式相同,而不是每一个物理量的数值在不同惯性系中都相同。2、3 洛仑兹变换231、洛仑兹变换如图18-1-1所示的两个惯性系:S系和S系。设同一事件的两组时空坐标分别为(X,Y,Z,t) 和(。按洛仑兹变换有 (13) 或 式(13)称为洛仑兹坐标变换公式,式中=1/。请注意是X 和t 的函数,t是和的函数,即时间不再与空间无关。232、 洛仑兹速度变换公式 或 (14)式(14)中=1/2、4、相对论时空理论241、 运动时钟延缓 亦称爱因斯坦延缓。我们考虑晶体振动这样一个物理过程。设晶体在 系中静止,在静止系中测得晶体的振动周期为,若系匀速v 相对S 系沿x轴运动,若晶体相邻两次达到振幅极大值的事件在S系中的坐标为(x,t),(x,t) ,在系中为(,),(,),其中=。由洛仑兹变换可得 -=因为-=,令-=t,则t=这表示在系中同地发生的两事件的时间间隔,由S系观察是延长了。将同地发生的两事件换为事件发生处钟的读数,就得到两个惯性系中时钟快慢的比较。当系中的一个钟通过S系的两个钟(S系认为已校准的两个钟)时,S系的钟所记时间间隔比系所记的大,即每一个惯性系都测得对它运动着的时钟变慢了。所有发生在运动物体上的物理过程都具有这种延缓,因此它是时空的一种基本属性,与过程的具体性质无关。这种延缓又称为时间膨胀或爱因斯坦延缓。242、 运动尺度缩短 设一棍静止在系中,沿 轴放置,且系想对于S系以匀速v沿x方向运动。在系的观察者观察,棍后端的坐标为,前端的坐标为,棍对他没有运动,因此他测得棍长为=-。S系的观察者观察到在同一时刻t,棍后端的坐标为,前端的坐标为,则他测得棍长为=-,根据洛仑兹变换=,=.两式相减,得,即.这表示物体沿其长度方向运动时,其长度缩短为静止时的倍。这种现象称为洛仑兹收缩。缩短是相对的,每一惯性系都测得对它运动着的物体沿运动方向的长度要缩短。运动物体沿运动方向的长度缩短是时空的一种基本属性,不但物体的长度缩短,物体间的距离也要缩短,所以这种收缩不是物体内部结构的改变。243、 相互作用的最大传播速度和因果律 由同时的相对性可知,事件的先后次序与它们的空间位置和两惯性系间的运动状态有关。在经典的时空理论中,时间的次序是绝对的。在相对论时空观中,是否事件的先后次序没有客观意义呢?显然不是的,如果两事件有因果关系(如农样生产中,先播种后收获,人的先生后死),则它们的先后次序应当是绝对的,不容颠倒,这是事件先后这个概念所必须反映的客观内容。相对论在什么条件下才与这个条件一致呢?设两事件的时空坐标在S系中为()和() ,在系中为() 和() ,由洛仑兹变换有.如果两事件有因果关系,而且,由于它们的次序不能颠倒,必须在系中观察时,亦有。这就要求,即.因为,满足上式的条件是.对于因果事件,正是事件进展的速度,因此因果事件先后次序的绝对性对相对论的要求是:所有物体的运动速度、讯号传输的速度是光速c。 同时的相对性 在惯性系S中异地同时发生两个事件:事件1(),事件2() ,且(设y,z不变,故事件只用x, t表示)。在另一惯性系中看这两事件的时空坐标为1:()与2:()。由洛仑兹变换关系 =只要,则。就是说在S系中同时发生的两事件,在系看却不同时,即在某惯性系内不同地点同时发生的两事件,对具有相对运动的另一惯性系内的观察者说来,他所测得的两个事件发生的时刻是不同的,同时是相对的。2、5、相对论动力学基础251、 相对论质量式(18-18)中为物体的静止质量,v为物体的运到速度,c为真空中的光速。此式告诉我们在狭义相对论中物体的质量不再是一个恒量,而是一个随速度变化的物理量。当时,而当时,。因此一个有限大小的力作用于静止质量无论如何小的物体上,其速度不可能趋近于无限大,物体的极限速度为c。252、相对论能量(1)物体的总能量 式(18-19)表明:一定的质量必定联系着一定的能量,反之一定的能量必定联系着一定的质量。这个方程就叫做爱因斯坦质能(联系)方程。既然物体的质量与能量有一定的对应关系,所以在相对论力学中质量守恒与能量守恒等价。(2)物体的静能 (3)物体的相对论动能 (4)质能变化方程: 上式告诉我们当物体的质量发生的变化时,必同时伴随着能量的变化。253、相对论动量254、相对论能量、动量的关系(1) 若以 、表示一直角三角形的两条直角边,则E必构成此直角三角形的斜边。(2) 255、相对论的动力学的基本方程256、相对论的速度叠加由于时间和空间的相对性,对于物体的速度,在某一惯性系内观测,要用系的时间和空间坐标表示;在另一惯性系S内观测,要用S系的时间和空间坐标表示。这样,速度叠加公式就不再是绝对时空的速度叠加公式了。假如和S两系的坐标轴相平行,以速度v沿x轴而运动,一质点以相对沿轴而运动,则相对S,其速度u为这是相对论的速度叠加公式。如果,则uc;如果(光速),则u=c。与相对论的时空概念相协调。2、6、广义相对论初步狭义相对论在惯性系里研究物理规律,不能处理引力问题。1915年,爱因斯坦在数学家的协助下,把相对性原理从惯性系推广到任意参照系,发表了广义相对论。由于这个理论过于抽象,数学运算过于复杂,这里只做个大概描述。261、 非惯性系与惯性力 牛顿运动定律在惯性系里才成立,在相对惯性系做加速运动的参照系(称非惯性系)里,会出现什么情况呢?例如,在一列以加速度做直线运动的车厢里,有一个质量为m的小球,小球保持静止状态,小球所受合外力为零,符合牛顿运动定律。相对于非惯性系的车厢来观测,小球以加速度-向后运动,而小球没有受到其他物体力的作用,牛顿运动定律不再成立。 不过,车厢里的人可以认为小球受到一向后的力,把牛顿运动定律写为。这样的力不是其他物体的作用,而是由参照系是非惯性系所引起的,称为惯性力。如果一非惯性系以加速度相对惯性系而运动,则在此非惯性里,任一质量为m的物体受到一惯性力,把惯性力计入在内,在非惯性里也可以应用牛顿定律。当汽车拐弯做圆周运动时,相对于地面出现向心加速度,相对于车厢人感觉向外倾倒,常说受到了离心力,正确地说应是惯性离心力,这就是非惯性系中出现的惯性力。262、 惯性质量和引力质量 根据牛顿运动定律,力一定时,物体的加速度与质量成反比,牛顿定律中的质量度量了物体的惯性,称为惯性质量,以为符号,有 根据万有引力定律,两物体(质点)间的引力和它们的质量乘积成正比。万有引力定律中的质量,类似于库仑定律中的电荷,称为引力质量,以为符号。惯性质量和引力质量是两个不同的概念,没有必然相等的逻辑关系,它们是否相等,应由实验来检验。本世纪初,匈牙利物理学家厄缶应用扭秤证明,只要单位选择恰当,惯性质量和引力质量相等,实验精度达。后来,人们又把两者相等的实验精度提高到。设一物体在地面上做自由落体运动,此物体的惯性质量和引力质量分别为和,以代表地球的引力质量,根据万有引力定律和牛顿第二定律,有,式中G为万有引力常量,R为地球半径,g为物体下落的加速度。因为,所以,与物体的质量无关。这就是伽利略自由落体实验的结论。既然惯性质量与引力质量相等,就可以简单地应用质量一词,并应用相同的单位。质量也度量了物质的多少。263、 广义相对论的基本原理 爱因斯坦提出广义相对论,主要依据就是引力质量和惯性质量相等的实验事实。既然引力质量和惯性相等,就无法把加速坐标系中的惯性力和引力区分开来。比如,在地面上,物体以的加速度向下运动。这是地球引力作用的结果。设想在没有引力的太空,一个飞船以做直线运动(现在可以做到),宇航员感受到惯性力,力的方向与a的方向相反,这时他完全可以认为是受到引力的作用。匀加速的参照系与均匀引力场等效,这是爱因斯坦提出的等效原理的特殊形式。因为引力质量和惯性质量相等,所以,在均匀引力场中,不同的物体以相同的加速度运动。这也是伽利略自由落体实验的结果。它可一般叙述为:在引力场中,如无其他力作用,任何质量的质点的运动规律都相同。这是等效原理的另一种表述。由于等效原理,相对于做加速运动的参照系来观测,任一质点的运动规律都是引力作用的结果,具有相同的规律形式。爱因斯坦进一步假设,相对任何一种坐标系,物理学的基本规律都具有相同的形式。这个原理表明,一切参照系都是平等的,所以又称为广义协变性原理。等效性原理和广义协变性原理是广义相对论的基本原理。264、 广义相对论的实验验证 在广义相对论的基本原理下,应建立新的图 2-6-1水星引力理论和运动定律,爱因斯坦完成了这个任务。这样,牛顿运动定律和万有引力定律成为一定条件下广义相对论的近似规律。根据广义相对论得出的许多重要结论,有一些已得到实验证实。下面介绍几例。yx 图2-6-31、日点的进动 按照牛顿引力理论,水星绕日作椭圆运动,轨道不是严格封闭的,轨道离太阳最近的点(近日点)也在做旋转运动,称为水星近日点的进动,如图2-6-1所示。理论计算和实验观测的水星轨道长轴的转动速率有差异。牛顿的引力理论不能正确地给予解释,而广义相对论的计算结果与观测值符合。爱因斯坦当年给朋友写信说:“方程给出了进动的正确数字,你可以想象我有多高兴,有好些天,我高兴得不知怎样才好。”2、光线的引力偏折 在没有引力存在的空间,光沿直线行进。在引力作用下,光线不再沿直线传播。比如,星光经过太阳附近时,光线向太阳一侧偏折,如图2-6-2所示。这已在几次日蚀测量中得到了证实,证明广义相对论的计算偏折角与观测值相符合。3、光谱线的引力红移 按照广义相对论,在引力场强的地方,钟走得慢,在引力场弱的地方,钟走得快。原子发光的频率或波长。可视为钟的节奏。引力场存在的地方,原子谱线的波长加大,引力场越强,波长增加的量越大,称这个效应为引力红移。引力红移早已为恒星的光谱测量所证实。20世纪60年代,由于大大提高了时间测量的精度,即使在地面上几十米高的地方由引力场强的差别所造成的微小引力红移,也已经精确地测量出来。这再一次肯定了广义相对论的正确性。 星球太阳图2-6-24、引力波的存在 广义相对论预言,与电磁波相似,引力场的传播形成引力波。星体作激烈的加速运动时,发射引力波。引力波也以光的速度传播。虽然还没有直接的实验证据,但后来对双星系统的观测,给出了引力波存在的间接证据。广义相对论建立的初期并未引起人们的足够重视,后来在天体物理中发现了许多广义相对论对天体物理的预言,如脉冲星、致密X射线源、类星体等新奇天象的发现以及微波背景辐射的发现等。这些发现一方面证实了广义相对论的正确性,另一方面也大大促进了相对论的进一步发展。本章典型例题例1、放射性物质的原子放射出两个沿相反方向运动的电子。在实验室中测出每个电子的速率为0.6c,c是光速。今以一个电子为参照物,另一个电子的速率是多大?(1)用伽利略变换进行计算;(2)用洛仑兹变换进行计算。并指出哪个不合理。解: (1)设向右运动的电子为系,则按伽利略变换,在系中看另一电子的速度是v=0.6c+0.6c=1.2c,这与光速不变的实验事实相矛盾,所以是不合理的。(2)设实验室为参照系S,一个电子参照系为,则相对于S系的速度是0.6c,另一个电子相对于S系的速度为-0.6c,按洛仑兹变换,另一个电子相对于系的速度是,则 = = 这就是说,以一个电子为参照物看另一个电子的速度是0.88cc,即小于光速,与实验相符合,是合理的。例2、有一条河宽为l,其河水流速是v,船相对河水的速度为,且。今有船A和B分别沿图2-6-4(a)中所示路径往返一次,求各需要时间多少?哪条船需时长些?图2-6-4ABv(a)Syvxy(b)解 本题是经典力学问题,用力伽利略变换处和即可。设岸的坐标系为S,河水的坐标系为,如图2-6-4(b)所示,若船相对岸的速度为u,则对于A船, , .由伽利略变换知:,则.而 = =所以A船往返一次所需时间为对于B船,相对于岸的往返速度分别为和,所以其往反一次所需要的时间为因为,所以.按和展为幂级数的公式有 = =所以 ,故,即B往返一次的时间比A船往返一次的时间要长。例3、一个中微子在惯性系S中沿+y方向以光速c运动,求对S系以速度v沿+xySOxvOx图2-6-5图2-5方向运动的观察者所观测到的中微子的速度和方向怎样?解: 设运动观察者为系,他所看到的中微子的速度分量为, ,则按洛仑兹变换= = (令) =因此, 即运动中的观测者测得中微子的速度仍是c,中微子的运动方向是即中微子运动方向与轴的夹角。例4、试证明:物体的相对论能量E与相对论动量P的量值之间有如下关系:证明:E- pc=(mc)-(mvc)=mc( c- v)=( c- v)=c- v)= mc=E E=pc+ E 读者可试为之,从E- E入手证明它等于pc。例5、一个静止质量为m的粒子以速率 v=运动,它和一个同类的静止粒子进行完全非弹性碰撞。求:(1)复合粒子的速率。(2)复合粒子的静止质量。解: 在微观领域相对论动量守恒、相对论能量守恒。故有 将代入得: 与代入得:即复合粒子的速率为,静止质量为。例6、求证:在伽利略变换下,质点动量定理具有不变性。证明:在S系中, 两边同时作定积分得: 这就是S系中质点的动能定理的数学公式。在系中两边同时作定积分可得: 这就是系中的质点动量定理的数学公式。为回避高等数学,可设一质量为m的质点沿x轴正方向,在平行于x轴的恒定的合外力F作用下作匀加速直线运动。经过时间t,速度从增大到,根据牛顿第二定律在S系中有 整理得: 这就是S系中的质点动量定理。在系中,即 此即系中的质点动量定理。例7、一个静止质量为M的物体静止在实验室中,裂变为静止质量为和的两部分,试求裂变产物的相对论动能和。解:根据相对论能量守恒有 化简得: 根据相对论动量守恒有 但 将 和代入式化简得: 由、两式可解得: , 例8、爱因斯坦的“等效原理”指出,在不十分大的空间范围和时间间隔内,惯性系中引力作用下的物理规律与没有引力但有适当加速度的非惯性系中的物理规律是相同的。现在研究以下问题。(1)试从光量子的观点出发,讨论在地面附近的重力场中,由地面向离地面的距离为L处的接收器发射频率为的激光与接收器接收到的频率v之间的关系。(2)假设地球物体没有引力作用,现在一以加速度a沿直线做匀加速运动的箱子中做一假想实验。在箱尾和箱头处分别安装一适当的激光发射器和激光接收器,两者间的距离为L,现从发射器向接收器发射周期为的激光。试从地面参考系的观点出发,求出位于箱头处的接收器所到的激光周期T。(3)要使上述两个问题所得到的结论是完全等价的。则问题(2)中的箱子的加速度的大小和方向应如何?解: (1)对于能量为的光子,其质量,在重力场中,当该光子从地面到达接收器时,增加的重力势能为mgh。由能量守恒得得 (2)设t=0时刻,箱子从静止开始加速,同时,激光光波的某一振动状态从发射器发出,任何时刻t,发射器和接收器的位置分别为所考察的振动状态的位置和比该振动状态晚一个周期的振动状态的位置分别为:x=ct设所考察的振动状态在时刻到达接收器,则有解得 比所考察的振动状态晚一个周期发出的振动状态到达接收器的时刻为,则有解得 接收器接收到的激光的周期为T=t-t=((3)比较上述两式得a=g,即“箱子”的加速度a=g方向竖直向上。例9、考虑不用发射到绕太阳运动的轨道上办法,要在太阳系建立一个质量为m的静止空间站。这个空间站有一个面向太阳的大反射面(反射系数为1),来自太阳的辐射功率L产生的辐射压力使空间站受到一个背离太阳的力,此力与质量为的太阳对空间站的万有引力方向相反,大小相等,因而空间站处于平衡状态。忽略行星对该站的高中物理竞赛原子物理学教程第二讲相对论初步知识 作用力,求:(1)此空间站反射面的面积A。(2)平衡条件和太阳与空间站之间的距离是否有关?(3)设反射面是边长为d的正方形,空间站的质量为千克,确定d之值。已知太阳的辐射功率是瓦。太阳质量为千克。解: (1)设空间站与太阳的距离为r,则太阳辐射在空间站反射面上单位面积内的功率即光强,太阳光对反射面产生的压强是光子的动量传递给反射面的结果,这一光压为于是反射面受到的辐射压力 太阳对空间站的万有引力为 式中G为万有引力常数,在空间站处于平衡状态时,即这就得到,反射面的面积(2)由上面的讨论可知,由于辐射压力和太阳引力都与成反比,因而平衡条件与太阳和空间站的距离r无关。(3)若A=。并以题给数据代入前式得到有关量子的初步知识3. 1、初期量子理论20世纪之初,物理学家为解释一些经典物理所不能解释的实验规律,提出了量子理论。量子理论经过进一步发展,形成了量子力学,使量子力学成为近代物理学的两大支柱之一。311、 311、 普朗克量子论 一切物体都发射并吸收电磁波。物体发射电磁波又称热辐射,温度越高,辐射的能量越多,辐射中短波成份比例越大。完全吸收电磁辐射的物体发射电磁辐射的本领也最强,称这种理想的物体为黑体。研究黑体辐射电磁波长的能量与黑体温度以及电磁波波长的关系,从实验上得出了著名的黑体辐射定律。图116 电子衍射图样图117 伦琴射线衍射图样假设电磁辐射是组成黑体的谐振子所发出,按照经典理论,谐振子的能量可以连续地变化,电磁波的能量也是可以连续变化的,但是理论结果与实验定律相矛盾。1900年,德国物理学家普朗克提出了量子理论:黑体中的振子具有的能量是不连续的,从而,他们发射或吸收的电磁波的能量也是不连续的。如果发射或吸收的电磁辐射的频率为v,则发射或吸收的辐射能量只能是hv的整倍数,h为一普适常量,称为普朗克常量,普朗克的量子理论成功地解释了黑体辐射定律,这种能量不连续变化的概念,是对经典物理概念的革命,普朗克的理论预示着物理观念上革命的开端。312、 爱因斯坦光子理论 因为电磁波理论也不能解释光电效应,在普朗克量子论的基础上,爱因斯坦于1905年提出了光子概念。他认为光的传播能量也是不连续的,而是一份一份的,每一份能量称为一个光子,即光是由光子组成的,频率为v光的光子能量等于hv,h为普朗高中物理竞赛原子物理学教程 第三讲有关量子的初步知识克常量。光子理论圆满地解释了光电效应。人们对光本性的认识前进了一步:光具有波粒二象性。在经典物理中,波是连续的,粒子是分立的,二者不相容。所以,不能把光看作经典物理中的波,也不能把光看作经典物理中的粒子。故此,有了爱因斯坦光电方程:W为逸出功,为光子频率, m为光电子质量。3、1、3 电子及其他粒子的波动性 我们已经了解到,玻尔把普朗克的量子论和爱因斯坦的光子理论,应用到原子系统上,于1913年提出了原子理论。按照玻尔理论,原子中存在着分立的能级,电子从某一能级向另一能级跃迁时,发射或吸收一个光子。这与经典物理的概念也迥然不同。这就启发人们:组成原子的粒子,如电子,必然不是经典意义下的粒子,所遵从的规律也不同于经典物理的规律。在光具有波粒二象性的启发下,法国物理学家德布罗意提出一个问题:“在光学中,比起波的研究方法来,如果说过于忽视粒子的研究方法的话,那么,在粒子的理论上,是不是发生了相反的错误,把粒子的图象想得太过分,而过分忽视了波的图象呢?”接着,他在1924年提出了一个假说,认为波粒二象性不只是光子才有,一切微观粒子,包括电子、质子和中子,都有波粒二象性。他指出:具有质量m和速度v的运动粒子也具有波动性,这种波长等于普朗克恒量h 与粒子mv动量的比,即=h/mv。这个关系式称做德布罗意公式。根据德布罗意公式,很容易算出运动粒子的波长。后来又用原子射线和分子射线做类似的实验,同样得到了衍射图样。质子和中子的衍射实验也做成功了。这就证明了一切运动的微观粒子都具有波粒二象性,其波长与动量的关系都符合德布罗意公式。粒子的波动性又称为德布罗意波或物质波。我们不能把电子等微观粒子视为经典的粒子,也不能把物质波视为经典的波。试验和论理的进一步研究发现,电子等微观粒子的波动性与声波或电磁波的特性并不完全相同,它们遵从的规律也不一样,这就导致了量子力学的诞生。3、2 量子力学初步321、 物质的二象性光的二象性:众所周知,光在许多情况下(干涉、偏振、衍射等)表现为波动性,但在有些情况下(如光电效应、黑体辐射等)又表现为粒子字。因而对光完整的认识应是光具有波粒二象性。一个光子的能量: E=hv v是光的频率,h是普朗克常数光子质量: 光子动量: 德布罗意波德布罗意把光的波粒二象性推广到实物粒子。他认为,波粒二象性是一切微观粒子共有的特性。第一个实物粒子在自由运动时所具有的能量为E、动量为p,这样的自由粒子必定对应一个振动频率为v、波长为的平面简谐波。这两组特征量之间的关系仍是自由的实物粒子所对应的平面简谐波常称为物质波或德布罗意波,它的客观真实性已为许多实验所证实。物质波的物理意义究竟是什么?波是振动状态在空间传播形成的,波在空间某处振动状态的强弱可用该处振幅的平方米来表征。对于光波,若某处振幅平方较大,则该处的光较强,光子数较多,这也意味着光子在该处出现的可能性较大,物质波也是如此。物质波若在某处振幅的平方较大,则实物粒子在该处出现的可能性较大,可能性的大小可定量地用数学上的概率大来表述,物质波各处振幅的平方便与粒子在该处出现的概率联系起来,这就是物质波的物理意义。例1、试估算热中子的德布罗意波长。(中子的质量)热中子是指在室温下(T=300K)与周围处于热平衡的中子,它的平均动能它的方均根速率,相应的德布罗意波长这一波长与X射线的波长同数量级,与晶体的晶面距离也有相同的数量级,所以也可以产生中子衍射。322、海森伯测不准原理设一束自由粒子朝z轴方向运动,每一个粒子的质量为m,速度为v,沿z轴方向的动量P=mv。这一束自由粒子对应一个平面简谐波,在与z轴垂直的波阵面上沿任何一个方向(记为x方向)的动量取精确值。波阵面上各处振幅相同,每一个粒子在各处出现的概率相同,这意味着粒子的x位置坐标可取任意值,或者说粒子的x位置坐标不确定范围为。为了在波阵面的某个x位置“抓”到一个粒子,设想用镊子去夹粒子。实验上可等效地这样去做:在波阵面的前方平行地放置一块挡板,板上开一条与x轴垂直的狭缝,狭缝相当于一个并合不够严实的镊子。如果狭缝的宽度为x,那么对于通过狭缝的粒子可以判定它的x位置不确定范围为x。x越小,通过狭缝粒子以x位置就越是确定。然而问题在于物质波与光波一样。通过狭缝即会发生衍射,出射波会在缝的上、下两侧散开,或者说通过狭缝的粒子既有可能继续沿x轴方向运动,也有可能朝x轴正方向或负方向偏转地向前运动。偏向的粒子必对应地取得x方向的非零动量,即有,这表明出射粒子在x方向的动量不再一致地为,因此x方向动量有不确定性,不确定范围可记为。缝越窄,x越小,粒子的x位置越接近准确,但衍射效应越强,越大,粒子的x方向动量值越不准确。反之,缝越宽,x越大,粒子的x位置越不准确,但衍射效应越弱,越小,粒子的x方向动量值越准确。总之,由于波动性,使粒子的x位置和x方向动量不可能同时精确测量,这就是测不准原理。由近代量子理论可导出x与之间的定量关系,这一关系经常可近似地表述为:h对y和z方向,相应地有:, 有时作为估算,常将上述三式再近似取为:在经典力学中,运动粒子任意时刻的位置和动量或者说速度都可以精确测定,粒子的运动轨道也就可以确定。在量子理论中,运动粒子在任意时刻的位置和动量或者说速度不能同时精确测定,粒子的运动轨道也就无法确定。微观世界中,粒子的运动轨道既然不可测,也就失去了存在的意义。如在经典力学中,可以说氢原子中的电子绕核作圆轨道或椭圆轨道运动。在量子力学中,只能说粒子在核周围运动,某时刻电子的位置可能在这里,也可能在那里。描述这种可能性的概率有一个确定的分布。即使在这一时刻于某一位置“捕捉”到了该电子,也不能预言下一时刻该电子会出现在什么位置,因为电子的运动没有可供预言的轨道。经典力学中一个粒子可静止在某一确定的位置,量子力学则否定了这种可能性。据测不准原理,如果一个粒子在x、y、z坐标完全确定,即x=y=z=0,那么它的x、y、z方向动量均不可为零,否则,与上面给出的关系式显然会发生矛盾。例2、实验测定原子核线度的数量级为。试应用测不准原理估算电子如被束缚在原子核中时的动能。从而判断原子核由质子和电子组成是否可能。取电子在原子核中位置的不确定量,由测不准原理得由于动量的数值不可能小于它的不确定量,故电子动量考虑到电子在此动量下有极高的速度,由相对论的能量动量公式故 电子在原子核中的动能。理论证明,电子具有这么大的动能足以把原子核击碎,所以,把电子禁锢在原子核内是不可能的,这就否定了原子核是由质子和电子组成的假设。3.2.3 量子力学的基本规律薛定谔方程 波函数是描写微观粒子的基本物理量,波函数所遵从的规律,就是量子力学的基本规律,它将决定粒子函数的特征,从而决定粒子的运动状态。正像在经典力学学里,粒子的位置和动量描写粒子的运动状态,牛顿运动定律决定了粒子的位置和动量如何变化,因而牛顿运动定律是经典力学的基本规律。奥地利物理学家薛定谔(18871961)在1926年找到了遵从的规律,称为薛定谔方程。在应用数学形式描述电子的波粒二象性上,他从麦克斯韦电磁理论得到启发,认为电子的德布罗意波也可以应用类似于光波的方式加以描述。这个方程既描述了电子的波动行为,又蕴涵着粒子性特征。写出并求解薛定谔方程,超出本书的范围。不过,我们可以讨论一下有关结论。波函数必须满足一些物理条件:作为描写粒子运动状态的应是时空坐标的单值函数,变化应是连续的,不能变为无限大,即应有界。这样,薛定谔方程的解,不但成功地解释了玻尔原子理论所能解释的现象,而且能够解释大量玻尔理论所不能解释的现象。玻尔的基本假设,在量子力学里是从理论上推导出来的必然结果。原来,在薛定谔方程中,只有原子中电子具有某些不连续的能量值时,方程的解才满足上述物理条件。由薛定谔方程解中得出的氢原子中电子能量的可能值,正好就是玻尔原子理论给出的值。3.2.4 概率密度与电子云 我们将以原子的稳定态为例,讨论一下由波函数所决定的电子在原子中的概率密度,这波函数就是由薛定谔方程求解出来的。因为是稳定态,所以和时间无关,说明在任何时候,电子出现在任一处的概率密度都相同。例如,氢原子处在基态时,电子经常出现的概率最大的地方,是以原子核为中心的一个球壳,这个球壳的半径为米,这个数值与玻尔原子理论计算出来的基态轨道半径相同,可见,玻尔的原子轨道只不过电子出现概率最大的地方。电子核外的运动情况,通常用电子云来形象地描述。用小黑点的稠密与稀疏,来代表电子核外各处单位体积中出现的概率(即概率密度)的大小,这样就可以画出原子的电子云图。图11-8是氢原子基态的电子云。看一下以核为中心的一层层很薄的球壳中电子出现的概率,在靠近原子核的地方,虽然云雾浓度较大,小黑点稠密,但是靠近原子核的一个薄球壳中包含的小黑点的总数不会很多,即电子出现在这个球壳中的概率不会很大,因为这个球壳的体积较小。在远高中物理竞赛原子物理教程第四讲基本粒子高中物理竞赛原子物理教程第三讲有关量子的初步知识 第四讲基本粒子离原子核的地方,球壳的体积虽然较大,但是小黑点稀疏,因而出现在这个球壳中的概率不会很大。经过计算知道,在半径为米的一薄的球壳中电子出现的概率最大,就是玻尔理论中氢原子基态的轨道半径。3.2.5 量子学的应用和发展量子力学建立后,应用它计算氢原子的光谱,获得巨大成功,其理论计算与实验结果完全符合。量子力学不仅可以正确地解释氢原子光谱,而且,还可以说明复杂原子的构造,解释复杂原子的光谱。这确实表明,量子力学是微观粒子所遵从的规律。在量子力学发展的早期,就认识到它的应用不限于电子,对其它粒子也一样适用。1927年,美国物理学家康登应用量子力学解释了衰变现象。这又称为隧道效应。在粒子放射体中粒子被约束在原子核内,其能量小于核对它的结束能量势垒,按照经典理论,粒子是不可能穿出原子核的。但是,按照量子力学,粒子有穿过势垒的概率。这个概率即使很小,但不为零。对大量的原子核来说,总会有一小部分原子核的粒子,穿透势垒而发射出来。理论计算为实验数据所证实。量子力学在建立之初,就用于研究分子的结构。美国物理学家和化学家泡利阐明了化学键的本性,就是以量子力学为依据的。比如,对,CO等分子,原子之间的相互作用是量子力学效应。当两个氢原子互相靠近时,它们能量的减小在于相互吸引作用高中物理竞赛原子物理教程第三讲有关量子的初步知识第四讲基本粒子而这是由于两个原子共享两个电子造成的。和电子波函数的对称性密切相关。量子力学可以算出分子的平衡距离为米,两个氢原子结合成氢分子时释放的能量为4.52电子伏。同样,量子力学也解释了共价键以外的结合键。这里不作具体介绍。凝聚态物理,如液体和固体的构造理论,其导电与导热性能的解释,也是建立在量子力学基础之上的。比如研究电子在晶体中的运动,因为晶体点阵的周期性结构。电子受的力也具有空间的周期性,量子力学能揭示电子在晶体中的运动状态,就像一个原子中的电子可以处在不同的能级上,在固体中,电子可以在不同的能带上,能带有一定的宽度,代表一个能量范围。这就是能带理论。应用能带理论,可以成功地解释金属和半导体的导电特性。在近代,其实际应用几乎随处可见。薛定谔方程是非相对论的,不能应用于高速的微观粒子。1928年,狄拉克建立了相对论的量子力学方程,称为狄拉克方程。它不仅成功地说明电子自旋的存在,而且还证明,对于每一种粒子,都存在相应的反粒子。电子的反粒子带正电,其他性质都和电子相同。1932年,美国物理学家安德森从宇宙射线中发现了正电子,证明了狄拉克理论的正确性,这是基本粒子广泛研究的开始。 基本粒子4、1、基本粒子411、 411、 什么是基本粒子 在古代就有一些哲学家认为物质是由原子组成的,原子是组成物质的最小颗粒,不可再分。有基本的涵义,可称为基本粒子。自19世纪初,英国科学家道尔顿以化学反高中物理竞赛原子物理教程第四讲基本粒子应为依据,提出物质是由原子组成的学说以来,人们相继发现了电子、质子、中子、正电子、中微子、介子等大量的基本粒子,基本粒子数目的大量增加,使人们认识到它们也不可能是最基本的组分,所以有“基本粒子不基本”的说法。中微子的发现,中子不是稳定粒子,它衰变为质子和电子:,实验发现此衰变中动量不守恒。经不断实验发现,中子衰变的正确反应应为。v为中微子的符号,为v 反粒子的符号。412、 粒子的自旋 到本世纪30年代末,加上在宇宙射线中发现的子,人们认为,电子、质子、中子、中微子、子和光子都是基本粒子。除中子和子是不稳定粒子外,其余都是稳定的。基本粒子的主要特征除质量的电荷外,还有自旋,这是一个量子力学概念,表征粒子的内部属性,相当于经典物概念是微粒的自转。它遵从量子力学的规律,以为单位,只能取整数0、1、2,或半整数1/2、3/2。上述6种粒子,除光子自旋为1外,其余都是自旋为1/2的粒子。自旋为整数的粒子又称为玻色子;自旋为半整数的粒子又称为费米子。413、 粒子和反粒子 经实验发现,每一种粒子都存在相应的反粒子。反高中物理竞赛原子物理教程第四讲基本粒子 粒子和粒子的质量、自旋都相同,电量相同而符号相反。对不带电的粒子,粒子和反粒子有其它的区分标志,这里不具体描述。在粒子的符号上加一横,代表反粒子,如是反中微子。也有的粒子的反粒子就是自身,而无区别,如光子。1932年安得森发现了正电子,使反粒子的存在第一次得到了证实。其他反粒子也先后被发现。如反质子和反中子分别是1955年和1956年在加速器中发现的。粒子和反粒子是互为反粒子的,只是当初称呼电子、质子等为粒子而已。我们这个世界是由粒子组成的,而不是由反粒子组成的。414、 强子介子和重子 本世纪40年代到50年代,从宇宙射线中又发现了一批粒子。比如发现了介子和K介子,它们的自旋为零;又发现了与核子(质子和中子)属于同一类而质量更大的粒子,称为超子,有超子、超子和超子,它们都是不稳定粒子。核子和超子统称为重子。介子和重子又统称为强子。因为它们之间的相互作用强大。415、 粒子的奇异性 仔细地分析新发现的各种粒子的衰变反应,以及它们参与的其它反应,发现K介子和超子具有产生快,衰变慢和同时产生两个或多个粒子的新特性,与介子和核子所有的性质不同,当时认为有些奇异,引入了一个称为奇异数的量子数来标志这种奇异性。 介子和介子的奇异数为1;超子的奇异数为-1;超子的奇异数为-2。具有奇异数的粒子,如其奇异数为s,则其反粒子的奇异数为-s。介子和核子的奇异数为0。在强相互作用中,奇异数守恒。416、 基本粒子分类 按照基本粒子之间的相互作用可分为三类:强子:凡是参与强相互作用的粒子,分为重子和介子两类。轻子:都不参与强相互作用,质量一般较小。光子:静质量为零,是传递电磁相互作用的粒子。417、 夸克模型 原子不再是基本粒子,原子核一不是基本粒子,介子和重子是否也由更为基本的粒子组成的呢?1964年,美国物理学家盖尔曼和以色列物理学家兹韦格分别提出了夸克模型。按照夸克理论,一切强子(参与强相互作用的粒子)都是由夸克组成的。初期提出的夸克有三种,分别称为上夸克u,下夸克d和奇夸克s。它们的自旋都是1/2, 属于费米子。夸克的重要特征之一是带有分数电荷。以电子电荷为单位,u的电荷为2/3,d的电荷为-1,s的电荷也是-1/3。此外,s的奇异数为-1。对于重子,有重子数作为标志,上节所述的重子的重子数为1,反重子的重子数为-1。夸克的重子数为1/3。对于每一种夸克,都存在相应的反夸克。反夸克的质量、自旋同于夸克,而电荷、奇异数和重子数的数值相同,符号相反。夸克之间存在着强相互作用,靠这种相互作用,每一个介子由一个夸克和一和反夸克组成;每一个重子由三个夸克组成,每一个反重子由三个反夸克组成。比如,介子是由u夸克和反下夸克组成的、质子是由u、u和d三个夸克组成的;超子是由u、d和s三个夸克uuddsuu图4-1-1组成的,余此类推。图4-1-1为P、 三个强子的结构示意图。目前已被科学家证实的夸克有:上夸克、下夸克、奇夸克、粲夸克、底夸克和顶夸克等6种。为了符合泡利不相容原理,物理学家还发现了夸克的一种更为深刻的性质:每种夸克都具有(颜)色,可以用红、黄、兰(或红、绿、兰)三种加以区分,这只不过是借光的颜色名字,夸克的色与光波的色完全是两回事。就像粒子带电称为电荷一样,夸克带色,也可以称为色荷。正是色荷间的相互促进作用,才使强子中的夸克互相吸引而束缚在一起。三种不同色的夸克组成不带色的重子,好像三原色组成白色一样。同样,夸克和反色夸克的色互补,它们组
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!