应用计算机辅助工程设计重型卡车车架 外文翻译

上传人:仙*** 文档编号:28017863 上传时间:2021-08-22 格式:DOC 页数:18 大小:190KB
返回 下载 相关 举报
应用计算机辅助工程设计重型卡车车架 外文翻译_第1页
第1页 / 共18页
应用计算机辅助工程设计重型卡车车架 外文翻译_第2页
第2页 / 共18页
应用计算机辅助工程设计重型卡车车架 外文翻译_第3页
第3页 / 共18页
点击查看更多>>
资源描述
应用计算机辅助工程设计重型卡车车架Carlos Cosme, Amir Ghasemi and Jimmy GandeviaWestern Star Trucks, Inc.摘要:近年来,重型卡车市场变得非常的注重重量和降低成本。这对设计工程师是重大挑战,因为这些车辆被用在各种各样的公路环境,从高速公路到严重的越野环境。目前的挑战是在不牺牲耐用性和性能降低的前提下满足质量和成本。本文论述了运用计算机集成、计算机辅助设计和工程软件代码(Pro / Engineer,ADAMS软件和ANSYS)来辅助设计更改车架。特别是,本文集中论述了一个ADAMS多体动力学模型,一个完整的卡车和拖车来模拟车辆的侧翻稳定性,平顺性,和耐久性载荷。该模型包括一个采用灵活的框架模型模态综合模式,探讨了有限元分析程序。之间的多体仿真链接与有限元程序也可以用来传输、加载应力分析有限元模型。所有代码之间紧密连结,确保新的设计并行计算可快速用于设计和分析。一个说明这是如何已被使用的技术详细的个案研究也包括在内。简介最近,重卡行业经历了汽车降低成本和重量的大发展。这一直是卡车制造商的主要挑战,在不牺牲耐用性和性能的前提下,寻找好的方式来优化他们的汽车设计。 由于车架是车辆系统的重要组成部分,它经常被用于完善。本文概述了电脑辅助工程(CAE)分析更改车架以及这些变化会如何影响车辆性能。重型卡车的车架是该车辆的骨干,上面集成了主要的卡车组成系统,如车轴,悬架,动力总成,驾驶室。典型的结构框架是梯形框架,中间交叉几根横梁。纵梁的断面尺寸变化很大,根据在卡车上的受力而定。而且,需要考虑各种因素:重量,复杂性和成本。这些变化将取决于横梁的作用和位置。请参考图1插图,一辆卡车的车架。然而,横梁布置的变化带来的影响还无法看出来。例如,如果横梁的抗扭刚度降低,对汽车的侧倾稳定性和耐久性的影响是怎么的呢?设计工程师们需要对这些类型的问题给出答案以指导他们的工作。特别是,及时的设计和分析程序是必需的,这样新的设计可以快速评估。图1重型载货汽车车架计算机辅助工程在过去的二十年中汽车自动化设计工具CAE得到了巨大的发展。这项技术的已被很多汽车制造商采用以改善汽车设计来满足快速增长的市场要求。当今的结构设计通常是使用两个CAE工具:有限元分析(FEA)和多体系统(MSS),结合CAD提高设计和分析。在过去十五年里,CAD系统已取代绘图板作为首选设计方法。它们使设计师和工程师能够快速画出卡车零部件,汽车真实模型和设计图纸。先进的CAD系统功能丰富,如参数化实体建模和大型装配管理。他们已经发展成为主要的数据库,为工程信息尤其是CAD系统提供下游CAE应用的重要数据。工程师通常使用有限元分析研究结构构件的强度。典型的有限元分析的重点是结构应力,挠度和自然频率。首先对通常被称为网格的离散结构进行分析。该网格是由节点和元素组成,而且经常从CAD创建几何系统。这些节点代表位移计算的结构。他们定义的局部质量,刚度和阻尼性能结构。有关这些数量方程,可以自动开发节点位移。其他投入,如边界条件,载荷和材料特性,必须是由用户定义。所有这些效果都需要小心的判断和对有意义的结果进行认真的分析。结果后处理包括图像变形负载结构,彩色应力轮廓,振型动画。MSS多体系统仿真方法研究了运动部件和组件,并经常用来研究车辆暂停或车辆的操作和动态响应。一个典型的完整的车型MSS将刚体组成(车轮,车轴,车架,发动机,驾驶室)模拟成关节连接和理想化力元。 MSS代码自动发展非线性微分方程和代数方程定义模型中的物体运动。该方程在数值上集成刚体位移,速度,加速度和受力。结果以图形和动画显示该系统的运动。至于有限元分析,CAD数据经常使用MSS的发展模式。CAD几何数据是用于建立MSS的布局模式,如接头和力量元素的位置。CAD实体模型数据也可以用来估计每个刚体的位置,质心和惯性特性。作用在刚体上的力可以用作MSS的输入负载,有限元分析确定该刚体的结构应力。CAE技术在本文所讨论的工具包括基与CAD的Pro / Engineer,ANSYS进行有限元分析,以及基于ADAMS的MSS。下面的讨论引用的是某型卡车的车架有限元分析。CAE重型汽车建模如上所述,在目前提供的CAD与CAE工具提供了大量的整合。尽管如此,这些工具是非常粗略的分析,仍然需要努力分析重型卡车和卡车车架。为了充分了解车架影响汽车操纵的变化,滚动稳定性,平顺性和持久性,需要一个详细的MSS模型,可以模拟所有这些影响。使用ADAMS软件代码,建立了WesterStar卡车的模型。图二展示了在ADAMS环境下的模型。图2 ADAMS的MSS的模型该模型包括以下几个特点:100刚体180力元45共同元素415度-的自由度 固定的机构包括车架,驾驶室,车桥,车轮,发动机,引擎盖,散热器,钢板弹簧,悬挂臂,传动轴。对于许多质量属性这些机构采用简化的实体模型。受力的元素包括线性和非线性衬套,橡胶隔震支座模型元素,如驾驶室和发动机的座椅。非线性单分力用于模拟空气弹簧和减震器。这些元素的数据来自供应商执行的部件测试。转动关节和球形接头是用来连接点模型,如轮毂轴承和扭矩杆支点。Pro / Engineer的组件是用来确定这些元素的几何位置。由于重卡行业提供各种各样的车辆布局,为便于进行修改参数,卡车的许多子系统的被分开。例如,前桥组件(车轮,车轴,钢板弹簧和减震器)被链接到一个变量界定前桥纵向位置。使用这种技术,不同的汽车型号,通过改变这个变量前轴位置可快速开发。这一程序是复制以下组件:后悬挂,驾驶室,发动机,引擎盖。轮胎与路面接触处理内置在ADAMS轮胎程序,包括处理模型和轮胎耐用性。在ADAMS路面输入作为一个类似三角形有限元网格。自定义软件程序,然后翻译成两个文件的ADAMS的网格,以确定轮胎/路面相互作用力,图形查看在后面处理成动画。这些文件存储在一个共同的目录,便于检索。自定义控制算法开发,以控制车辆行驶速度,转向,传动扭矩。这些功能可以快速修改,以执行不同的车辆如滚筒稳定,高速行车变化,或耐久性颠簸类似的试验场。模拟运行后,受力和扭矩作用在车架上的数据写入数据文件。一个定制软件程序然后用来提取特定的负载时间步骤,并将其写入一个ANSYS加载文件。该加载文件然后读入ANSYS和应用到有限元模型的车架。然后,车架计算使用惯性释放的解决方案。总之,该模型使用定制软件程序与含代码的CAD和CAE,评定一个定制环境耐用的重型卡车。但是,模型假设车架是刚性的。在现实中,卡车车架包含了大量的灵活性,会影响车辆性能及稳定。因此,这些影响必须捕获到多体系统仿真。CAE解决方案的框架灵活性 前人技法 - 在过去,一些技术已经使用捕捉画面灵活性的MSS的模型。流行的三种方法是:轴套无质量的梁单元,超单元和有限元分析。第一种方法车架分为两种更为严格的机构或以刚性元素连接在一起有套管式的车架:刚性和三个阻尼方向。套管性能调整总体车架弯曲和扭转刚度。随着可以预计,这种方法使用起来很麻烦,如果适当调整,这将是唯一的能够捕捉基本弯曲和扭转的框架模式。第二种方法的框车架分为刚体无质量的梁互联元素。这是类似于套管的方法,但许多更为严格的机构通常使用,而且它们的连接用的是无质量的梁单元的方程(Timoshenko梁理论),更适合货车车架纵梁和交叉的横梁。然而,用此方法建立一个车架很费时,详细的梁单元的调整仍需捕获弯曲响应。第三种方法是最准确的,并且是基于有限元的代表性框架。在此方法中的有限元模型,减少到具有代表性的总体刚度超单元和质量属性浓缩到一个主集节点。减少的模型是检查原有限元模型,以确保重要动态参数的捕获。导入MSS的环境下,超单元和主节点转换为等价表示刚性机构和力量的元素。虽然这种方法是在有限元解的基础上,它仍然可以实现难以精确的结果。例如,必须选择主节点,以确保质量和刚度冷凝过程的准确。上述所有方法很难用于创建一个卡车精确灵活的车架。在一般情况下,他们只是捕捉基本响应:最初的几个弯扭、总的框架模式和刚度。在工作中需要很大的努力来调整其属性,配合一些诸如静挠度测试的参考,模态测试,或有限元模拟结果。因此,无论一个方法是同时使用合适的设计和分析环境 ,它只会对模型进行修改,并没有足够的空间分辨捕捉微妙的设计改变。模态综合技术 - 在有限元分析和MSS整合最新进展克服了上述方法的困难。现在可以用有限元模型,直接在多体仿真采用模态叠加,作为模态综合(CMS)的知名技术。利用模态叠加,一个结构变形可以说是由它的每一个贡献模式。通常,一个模式是非常大的数目,需要准确地捕捉点的变形。 约束应用到结构。发达国家解决了这个问题。它结合了正常模式与约束模式。这些约束模式或静态形状,捕捉到关键领域变形而不必维持正常模式结构。因此,他们在计算上更有效率。CMS的程序代码采用的是在ADAMS基于对克雷格-班普顿修改后的版本方法。这种方法的结构被认为是有约束和接口点力量应用,并且每个接口点最多可以有六个自由度:三个平移和三个旋转。该结构的议案,然后用一个两套组合模式:约束接口点的模式和固定接口的正常模式。第一种约束模式是计算每个自由度的一个接口点,它描述的静态形状是对这种结构的自由度给出一个单位偏斜度,同时保持所有自由度的其他接口点固定。此过程反复所有的接口模式。由于约束模式是静态的形状,其频率的信息是未知的。固定接口正常模式代表了整个结构的正常模式,对自由度的所有接口点是固定的。在这种形式下,克雷格.班普顿模式不适合集成理想的多体方程。例如,添加刚体约束模式,可在ADAMS非线性刚体上作用。此外,约束模式可能包含高频率,很难解决。Adams可以解决这些在处理克雷格-班普顿模式的问题。它标识刚体模式使它们很容易禁用。它还增加频率信息的约束模式,这是设置的宝贵积分参数。正交化后,修改设置存在的模式:正常模式,无约束结构(如类似的模式在特征值计算的有限元分析运行一个典型)和界面的自由度。所有的模态计算,上述是在ANSYS的环境中进行的。为了计算模式,用户选择的节点代表接口点在受力和限制进入的框架,然后运行宏,执行适当的ANSYS命令。正常模式包括在计算时传递到宏参数。最后一组的方式写入到一个模态中性文件,可读取ADAMS。这种模态叠加方法的优点很多,包括:框架是由一个单一的模态中性文件。因此,很容易重复使用其他型号的MSS。这些文件可以存储在共同目下方便以后使用。在MSS的模型中被表示为一个单一灵活的组织,并没有大量的刚体。这使得它更容易操作。每个弹性体模式可将一个自由度仿真。使前面的方法添加更多的自由度,因为他们使用了大量的刚性机构和上述每个自由度。线性灵活的特点,框架模型更为确切,因为它们是基于一个完整的有限元模型,而不是一个刚体集合和力量的元素。这使得它更容易调整模型与模态试验结果一致。阻尼影像于一个模式的基础。因此,阻尼从模态测试的结果可以很容易地添加,从而提高精确度。一个模拟模态参与,可跟踪的应变能的贡献为基础。模式不能够作出重大作用,以提高计算效率。模拟结果的可视化的改善,因为有限元网格的存在,在环境中的MSS可用于观看画面变形动画。对MSS的负荷转移回到原来的有限元分析应力分析模型进行了改进,因为负载与有限元网格节点。虽然,这种方法具有许多优点,它仍然需要费时实施。例如,并非所有整合和力量的元素都支持直接连接。倒是这些都必须先连接到无质量刚体,然后被锁定在使用固定的网格节点,对自由度添加无质量刚体。由于车架可以有36个或更多的MSS模型的连接点,它非常费时,所以使用灵活的框架。另外,如果现有的灵活的框架,需要取代新的设计更改,更多的建模努力是必要的,潜在的引进建模错误是可能的。为了克服这一困难,自定义程序被集成在开发一个灵活的车架。该过程开始于一个刚性框架。该模型的副本作出了一系列宏程序执行任务的副本:阅读柔性体模态中性文件和位置在该车型的弹性体。创建并连接每个无质量刚体节点力和约束应用于弹性体。修改所有连接到现有的刚体框架,以便它们连接到适当的无质量刚体。删除以前的刚体代表框架。有限元网格建模 为了这些方法有效地开展工作,车架的有限元模型必须易于创建和修改反映由设计师所需的变更。该方法在这里一开始就采用Pro / Engineer的实体模型,如图1所示。每个组件的实体模型建立专门有限元分析网格划分,因此,简化了实际的设计版本。有限元网格是创建一个附加模块为Pro /ENGINEE。它包含的功能有简化有限元网格划分,如自动确定中板地点,壳单元,应用全局和局部网格控制,并确定元素属性。同时建立内部的Pro / ENGINEER环境网格有许多优点。例如,更改实体模型自动反映在网格。因此,改变的轨道几何形状或位置交叉成员可以迅速网状和出口到ANSYS。验证框架灵活性 为了建立灵活的精度模型,进行模态试验。同一个ANSYS有限元模型,在建成使用过程中,将所述以上特征值和特征向量的计算进行比较。可以看出,在表1中,有限元模型很好地和试验的结果吻合。ADAMS模态频率也符合良好的测试数据,并为确认灵活的框架提供了一个准确的代表性结构。注意只有模式在高达56赫兹时提取模态测试数据。但测试并没有包含足够的测量点、要清楚界定模式形状。该框架模型纳入整车MSS的模型使用上述程序。然后计算和比较以模态的卡车类似的测试数据配置。见表2,一个典型的卡车的动力由模型很好的表示出来。结论在这份文件中提出的项目的目的是制定一个过程,设计变更到卡车可快速评估框架,使得并发设计和分析成为可能。如上所述,这个目标已经实现,结合当前电脑辅助设计及工程代码自定义软件程序。该工艺充分利用了每个代码的优势,创造高逼真度的环境,其中微妙的设计变更影响卡车框架可以衡量车辆性能和耐久性的要求。设计方案可以快速评估并反馈给设计师,虽然仍然有可能做出改变。虽然这个过程能成功使用,在许多地方可以进一步增强提出,将成为未来发展的重点。这些包括:1、仿真结果验证使用全车试验数据。这将用于了解模拟的弱点,并调整模型的参数。由于模拟精度改善,该模型将提供更好的数据组件优化。2、柔性使用模态综合技术将被添加到其他结构如驾驶室/卧铺和拖车。这两个灵活性为这些结构在平顺性和耐久性上发挥了重要作用。3、新的CAE技术,如疲劳分析会被添加。最近几年计算机辅助工程代码显著提高疲劳寿命估算,现在是可能的估计疲劳损伤,该结构在多体仿真中使用全时程负载。疲劳寿命轮廓可以被看作有限元模型,正如现在强调轮廓。这项技术大大提高了耐久性分析和发展一个虚拟试验场。致谢我们要感谢西方星卡车的管理团队,他们为CAE技术的研究提供大力支持。我们还要谢谢肯美利,唐摩尔,鲍勃和马克他们对文件认真审查。参考文献1. “Mechanics of Heavy-Duty Trucks and Truck Combinations” ,UMTRI Course Notes, July, 1995.2. Stasa, Frank L., “Applied Finite Element Analysis for Engineers”, CBS College Publishing, 1985.3. Ottarsson, Gisli, “Modal Flexibility Method in ADAMS/FLEX”, Mechanical Dynamics, Inc., March, 1998.4. “Using ADAMS/FLEX”, Mechanical Dynamics, Inc.,1997.5. “ADAMS/Finite Element Analysis Reference Manual”, Mechanical Dynamics, Inc. , November 15,1994.6. “Pro/MESH and Pro/FEM Post, Users Guide”, Parametric Technology Corporation, 1997.7. “ANSYS Structural Analysis Guide”, Analysis, Inc.,1994.8. Gillespie, Thomas D., “Fundamentals of Vehicle Dynamics”, Society of Automotive Engineers, Inc.,1992.9. Gobessi, Mark and Arnold, Wes, “The Application of Bonded Aluminum Sandwich Construction Technology to Achieve a Lightweight, Low Cost Automotive Structure”, SAE paper 982279.1999-01-3760Application of Computer Aided Engineering in the Design of Heavy-Duty Truck FramesCarlos Cosme, Amir Ghasemi and Jimmy GandeviaWestern Star Trucks, Inc.Copyright 1999 Society of Automotive Engineers, Inc.18ABSTRACTIn recent years the heavy-duty Class 8 truck market has become very focused on weight and cost reduction. This represents a major challenge for design engineers since these vehicles are used in a wide variety of vocations from highway line haul to logging in severe off-road environments.The challenge is to meet the weight and costreduction goals without sacrificing durability and performance. This paper discusses the integration of computer aided design and engineering software codes (Pro/Engineer,ADAMS, and ANSYS) to simulate the effect of design changes to the truck frame .In particular, this paper discuses the development of an ADAMS multi-body dynamics model of a full truck and trailer to simulate vehicle handling, roll stability, ride performance, and durability loading. The model includes a flexible frame model using a component mode synthesisapproach with modes imported from a finite element analysis program. The link between the multi-body simulation and the finite element code is also used to transferloads back to the finite element model for stress analysis. Tight links between all the codes ensures that new design iterations can be quickly evaluated for concurrentdesign and analysis. A detailed case study showing how this technology has been used is also included.INTRODUCTIONRecently the heavy truck industry has experienced a large push to develop vehicles with reduced cost and weight. This has been a major challenge for truck manufacturersas they look for ways to optimize their vehicle designs without sacrificing durability or performance.Since the truck frame is a major component in the vehicle system, it is often identified for refinement. This paper outlines a computer aided engineering (CAE) procedure for analyzing changes to the truck frame and how these changes affect vehicle performance .The frame of a heavy truck is the backbone of the vehicle and integrates the main truck component systems such as the axles, suspension, power train, cab, and trailer.The typical frame is a ladder structure consisting of two C channel rails connected by cross-members. The framerails vary greatly in length and cross-sectional dimensions depending on the truck application. Likewise, thecross-members vary in design, weight, complexity, and cost. These variations will depend upon the cross-member purpose and location. Refer to Figure 1 for an illustrationof a truck frame. However, the effects of changes to the frame and cross-members are not well understood.For example, if the torsional stiffness of a suspension cross-member is lowered, what is the effect on the vehiclesroll stability, handling, ride, and durability? Design engineers require answers to these types of questions to guide them in their work. In particular, a concurrent design and analysis procedure is required so that newdesigns can be quickly evaluated.Figure 1. Class 8 Heavy-Duty Truck FrameCOMPUTER AIDED ENGINEERINGIn the last twenty years there has been an enormous growth in the development of CAE tools for automotive design. Much of this technology has been adopted by the truck industry as truck manufacturers look to improve their designs in a rapidly growing market. Today structural design is typically performed using two CAE tools: finiteelement analysis (FEA), and multi-body system simulation (MSS). These are combined with computer aided design (CAD) software to improve design and analysiscommunication.CAD In the last fifteen years CAD systems have replaced drawing boards as the method of choice for design. They enable designers and engineers to quicklycreate realistic models of truck components, vehicle assemblies, and design drawings for manufacturing.Advanced CAD systems are rich in features such as parametric solid model and large assembly management. They have evolved to become major databases for engineering information. In particular , CAD systems provide important data for downstream CAE applications.FEA Finite element analysis is usually used by engineers to study the strength of structural components.Typical FEA activity is focused on analyzing structural stresses, deflections, and natural frequencies. The analysis begins with a discretized representation of a structureknown as a mesh. The mesh is composed of nodes and elements and is often created with geometry from a CAD system. The nodes represent points on the structure where displacements are calculated. The elements are bounded by sets of nodes and enclose areas or volumes. They define the local mass, stiffness, and damping properties of the structure. Equations relating these quantitiesto the nodal displacements are automatically developed by the software codes. Other inputs, such as boundary conditions, applied loads, and material properties, must be defined by the user. Each of these quantities requires careful judgement for meaningful results to be achieved. Results post-processing includes images of deformed structures under load, coloured stress contours, and mode shape animations.MSS Multi-body system simulation is used to study the motion of components and assemblies and is often used to study a vehicle suspension or a vehicles handling and ride response. A typical MSS model of a full vehicle will be composed of rigid bodies (wheels, axles, frame , engine, cab, and trailer) connected by idealized joints andforce elements. The MSS code automatically develops the non-linear differential and algebraic equations that define the motion of the bodies in the model. The equations are numerically integrated to produce time histories of rigid body displacements, velocities, accelerations, and forces. Results are viewed as graphs and animations ofthe system motion. As with FEA, CAD data is often used to develop a MSS model. Geometry data from a CAD assembly is used to establish the layout of the MSS model such as the location of joints and force elements. CAD solid model data is also used to estimate the location of the center-of-mass and the inertial properties of each rigid body. Forces acting on a rigid body from a MSS can be used as input loads to a finite element analysis to determine the structural stresses in that rigid body.The CAE tools discussed in this paper include Pro/Engineer for CAD, ANSYS for FEA, and ADAMS for MSS. The following discussion references the specific capabilities of these codes in developing a customized environment for the engineering analysis of truck frames.CAE CUSTOMIZATION FOR HEAVY TRUCKMODELLINGAs described above, the current offering of CAD and CAE tools provide a great deal of integration. Nonetheless,these tools are very general in scope and a significant customization effort is required for the analysis of heavy duty trucks and truck frames. To fully understand how changes to the truck frame impact vehicle handling, rollstability, ride, and durability requires a detailed MSS model that can simulate all these effects. Using theADAMS software code such a model was developed atWestern Star Trucks. Refer to Figure 2 for a view of the model in the ADAMS environment.Figure 2. ADAMS MSS ModelThe model includes the following characteristics: 100 rigid bodies 180 force elements 45 joint elements 415 degrees-of-freedomThe rigid bodies include the frame, cab, axles, wheels ,engine, hood, radiator, leaf springs, suspension arms, drive shafts, and the trailer. Mass properties for many ofthese bodies were estimated using simplified solid models in Pro/Engineer. The force elements include linear and non-linear bush ielements that model rubber isolators, such as the cab and engine mounts. Non-linear single component forces are used to model air springs and shock absorbers. Property data for these elements are derived from tests performed by component suppliers. Revolute joints andspherical joints are used to model connection points, such as wheel bearings and torque rod pivots, respectively. Pro/Engineer assemblies are used to determine the geometric location of these elements.Since the heavy truck industry offers a wide variety of vehicle layouts, the locations of many of the trucks subsystems were made parametric for easy modification. For example, the front axle subassembly(wheels, axles, leaf springs, and shock absorbers) were linked to a variable defining the longitudinal position of the front axle. Usingthis technique, truck models with different front axle positions can be quickly developed by changing the value of this variable. This procedure was duplicated for the followingsubassemblies: rear suspension, cab ,engine ,hood, and fifth wheel and trailer .Tire to road contact is handled with the ADAMS built-in tire routines and includes models for tire handling and durability forces. In ADAMS road profiles are representedas a mesh of triangles similar to a finite element mesh. The geometry and mesh for the road profiles are generated with Pro/Engineer. A custom software program isthen used to translate the mesh into two files for ADAMS :a road file format for the solver to determine the tire/road interaction forces, and a graphics format to view the roadduring post-processing animation. These files are stored in a common directory for easy retrieval. Custom control algorithms were developed to control vehicle speed, steering, and drive torque. These functionscan be quickly modified to execute different vehicle maneuvers such as roll stability, a high speed lane change, or durability bumps similar to a proving ground.After the simulations are run, the forces and torques acting on the frame are written to data files. A custom software program is then used to extract the loads at specifictime steps and write them to an ANSYS load file. The load file is then read into ANSYS and applied to a finite element model of the frame. The frame stresses are then calculated using an inertial relief solution.In summary, the model uses custom software routines and the existing links between the CAD and CAE codes to create a custom environment for evaluating the performance and durability of a heavy-duty truck. However, the model assumes that the truck frame is a rigid, under formable body. In reality, the truck frame contains a great dealof flexibility which can impact vehicle performance and stability. As a result, these effects must be captured in the multi-body system simulation.CAE SOLUTION FOR FRAME FLEXIBILITYPREVIOUS TECHNIQUES In the past, several techniques have been employed to capture frame flexibility in a MSS model. Three popular methods are: bushings,mass beam elements, and FEA super element reduction. In the first method the frame is divided into two or more rigid bodies connected together with force elements having bushing-like properties: stiffness and damping in three translational directions and three rotational directions. The bushing properties are adjusted to give the overall frame bending and torsional stiffness. As can be expected, this method is cumbersome to use, and if properly tuned, it will be capable of capturing only the fundamental bending and torsional modes of the frame. In the second method the frame is divided into a large number of rigid bodies interconnected by massless beam elements. This is similar to the bushing method but many more rigid bodies are usually used, and they are connected with massless beam elements whose equations (Timoshenko beam theory) are better suited to modellingtruck frame rails and cross-members. Nonetheless, it istime consuming to build a frame with this method and careful tuning of the beam elements is still required to capture the frames flexural response. The third method is the most accurate of the three methods and is based on a finite element representation of the frame. In this method the finite element model is reducedto a super element representation with the overall stiffness and mass properties condensed to a set of master nodes. The reduced model is checked against the original finite element model to ensure that the important frame dynamics are still captured. It is then imported into the MSS environment where the super elements andmaster nodes are converted to an equivalent representation of rigid bodies and force elements. Although this method is based on a finite element solution, it can still be difficult to achieve accurate results. For example, care must be taken in selecting the master nodes to ensure that the mass and stiffness condensation process is accurate.All the methods described above are
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸下载 > CAD图纸下载


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!