资源描述
初一数学有理数全章讲义1.1正数和负数知识点归纳一、 正数和负数的定义正数:大于0的数叫做正数。根据需要,有时在正数前面加上正号“+”,但是正数前面的正号“+”,一般省略不写。负数:在正数前面加上负号“-”的数叫做负数。负数前面的负号“-”不能省略。注:对于正数和负数的概念,不能简单地理解为带“+”的数就是正数,带“-”的数就是负数。eg:-a不一定是负数,因为字母a可以表示任何数,当a是正数时,-a是负数;当a表示负数时,-a则是一个正数,而不是负数;当a表示0时,-a就是在0前面加上一个负号,仍是0,0不分正负。二、具有相反意义的量正数和负数表示具有相反意义的量。若用正数表示某种意义的量,则负数就表示与其相反的量,反之亦然。常见的表示相反意义的量:零上和零下、前进和后退、海平面以上和海平面以下、收入和支出、向南和向北、盈利和亏损、升高和下降。三、0的意义(重点理解)数0既不是正数,也不是负数。0是正数和负数的分界线。0是一个确定的温度,海拔0表示海平面的平均高度。0的意义已经不仅是表示“没有”。典型例题1、下列说法不正确的是( )A0不是正数,也不是负数 B负数是带有“-”的数,正数是带有“+”的数C非负数是正数或0 D0是一个特殊的整数,它并不只是表示“没有”2、水位上升-0.5cm的意义是( )A水位上升0.5cm B水位下降0.5cm C水位没有变化 D水位下降了5cm3、下列说法错误的是( )A-5一定是负数 B在正数前面加上“-”就成了负数C自然数一定是正数 D-a不一定是负数4、下列说法正确的有( )不带负号的数都是正数 带负号的数不一定是负数 0表示没有温度 0既不是正数,也不是负数A.0个 B.1个 C.2个 D3个5、在跳远测验中,合格标准是4.00m,小明跳出了4.18m,记作+0.18m,小华跳出了3.96m,应记作6、-1,2,-3,4,-5,第81个数是,第2005个数是。7、峨眉山上某天的最高气温为12,最低气温为-4,那么这天的最高气温比最低气温高( )A.4 B.8 C.12 D.168、一架飞机在距离地面1500米的高空飞行,它第一次下降了-200米,第二次又上升了-100米,第三次下降了300米,此时飞机距离地面多高?9、某蓄水池的标准水位记为0m,如果用正数表示水面高于标准水位的高度,那么(1)0.08m和-0.2m各表示什么?(2)水面低于标准水位0.1m和高于标准水位0.23m各表示什么?10、2006年我国全年平均降水量比上年减少24毫米,2005年比上年增长8毫米,2004年比上年减少20毫米。用正数表示这三年我国全年平均降水量比上年的增长量。 1.2.1有理数知识点归纳一、有理数的概念正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。注:(1)正整数、0、负整数统称为整数。 (2)正分数和负分数统称为分数。 (3)对于小数,只有能化成分数的小数才是有理数。 (4)我们把有限小数和无限循环小数都看做分数,因此有限小数和无限循环小数是有理数。 (5)无限循环小数不能化成分数,因此它不是分数,也不是整数,所以就不是有理数。二、有理数的分类(重点)按数的种类分 按有理数的性质分有理数 有理数 注:(1)有理数的分类必须按同一标准,不漏、不重。 (2)0和正整数统称为非负整数。 (3)0和负整数统称为非正整数。 (4)0和正有理数统称为非负数。 (5)0和负有理数统称为非正数。典型例题1、-7是( )A.自然数 B.负分数 C.非负数 D.负整数2、所有的正整数和负整数结合在一起构成( ) A.整数集合 B.有理数集合 C.自然数集合 D.以上说法都不对3、关于0的说法,正确的有( )是整数 不是正数,也不是负数 是最小的整数 是自然数A.1个 B.2个 C.3个 D.4个4、下列说法不正确的是( )A.-0.5是分数 B.0不是正数也不是负数 C.整数和分数统称为有理数 D.0是最小的正数5、下列说法错误的是( )A负整数和负分数统称为负有理数 B正整数,0,负整数统称为整数C正有理数和负有理数组成全体有理数 D3.14是小数,也是分数6、下列说法正确的的是( )A.有理数是指整数、分数、正有理数、0、负有理数 B.一个有理数不是整数就是负数C.一个有理数不是整数就是分数 D.以上说法都正确7、0.四个数中,有理数的个数为( )A.1个 B.2个 C.3个 D.4个 8.有理数中,是整数而不是正数的是( ),是分数而不是正分数的是( )。9、有理数中,最小的自然数是( ),最小的正整数是( )。10、整数与分数统称为( ),整数包括( ),分数包括( )。11、通常把( )和( )统称为非负整数,把( )和( )统称为非正整数;把( )和( )统称为非负数,把( )和( )统称为非正数。12、将下列各数按要求分别填入相应的集合中。 0.2.(1)正整数集合: (2)负整数集合: (3)正分数集合: (4)负分数集合: (5)整数集合: (6)分数集合: (7)有理数集合: 1.2.2数轴知识点归纳一、数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。注意事项:(1)数轴是一条两端无限延长的直线。(2)原点,正方向,单位长度是数轴的三要素,三者缺一不可。(3)同一数轴上的单位长度要统一。(4)数轴的三要素都是根据实际需要规定的。(5)定义中的“规定”二字,是说原点的规定、正方向的选取、单位长度大小的确定,都是根据实际需要规定的,通常取向右为正方向。二、数轴的画法(重点)画数轴时,关键要体现数轴的三要素:原点、正方向、单位长度,三者缺一不可。其步骤如下:1、画一条水平的直线;2、在直线上任意选取一点为原点,并用这点表示零(在原点下方标上“0”);3、确定正方向(一般规定向右为正),用箭头表示出来;4、选取适当的长度作为单位长度,从原点向右,每隔一个单位长度选取一点,依次表示1,2,3,;从原点向左,每隔一个单位长度选取一点,依次表示-1,-2,-3,。三、数轴上的点与有理数的关系(重点、难点)一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个长度单位;表示数-a的点在原点的左边,与原点的距离是a个长度单位。所有的有理数都可以用数轴上的点表示,正有理数可以用原点右边(或上边)的点表示,负有理数可以用原点左边(或下边)的点表示,0用原点表示。注:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应的关系。四、利用数轴比较大小(重点、难点)1、数轴上的数的大小比较:在数轴上表示的两个数,右边的数比左边的数大2、有理数大小比较法则:(1)正数都大于0 (2)负数都小于0 (3)正数大于负数(4)两个负数比较大小:距原点距离远的数比距离远点近的数小,即在原点的左侧,离原点越远,数越小。典型例题1、规定了( )、( )、( )的直线叫做数轴。2、在数轴上表示数-3的点在原点的( ),与原点的距离为( )个长度单位。3、在数轴上到原点距离是2.5个长度单位的点表示的数是( )。4、P点表示的数是-1,到P点4个单位长度的点表示的数是( )。5、一个动点从表示1的点出发,先向左移动2个单位,再向右移动3个单位长度,则终点离原点的距离是( )个单位长度。6、若点A表示数-3,点B表示数7,那么A、B间的距离是( )。7、下列图中表示数轴的是( ).A. B. C. D.8、数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长2005cm的线段AB,则线段AB盖住的整点有( )A. 2003或2004个 B.2004或2005个 C.2005或2006个 D.2006或2007个9、画出数轴,用数轴画出表示下列各点的数并用“”连接起来。 4,-2,-4.5,0,10、如图,写出数轴上点A、B、C、D、E表示的数。11、小敏家、学校、邮局、图书馆坐落在同一条东西走向的大街上,依次记为A,B,C,D,学校位于小敏家西150m,邮局位于小敏家东100m,图书馆位于小敏家西400m。(1) 用数轴表示A,B,C,D的位置.(2) 一天小敏从家里以每分钟50m的速度先去邮局寄信后又往图书馆方向共走了8min.试问小敏这时约在什么位置?距离图书馆和学校各约多少米?1.2.3相反数知识点归纳一、相反数的概念只有符号不同的两个数,我们说其中一个是另一个的相反数;特别地,0的相反数是0.注:(1)“0的相反数是0”是相反数定义的一部分,千万不能把它漏掉.(2)相反数是成对出现的,不能单独存在,单独的一个数不能说是相反数. (3)“只有符号不同的两个数”中的“只有”指的是除符号不同以外数字完全相同,不要理解为只要符号不同的两个数就是互为相反数.二、相反数的意义任何一个数都有相反数,而且只有一个相反数,正数的相反数一定是负数;负数的相反数一定是正数;0的相反数仍是0.几何意义:互为相反数的两个数在数轴上对应的两个点到原点的的距离相等且位于原点的两侧;反之,位于原点两侧且到原点距离相等的点所表示的两个数互为相反数。代数意义:相反数中,“相反”的意思是说:“只有符号相反”,即两个数除符号不同外其余都相同。【注意】:(1)一个数的相反数的相反数是它本身.(2)注意区别“相反数” 与“相反意义的量”。前者是指具有相反符号的一对数,后者指相对具有相反意义的量。三、相反数的表示方法一般的,一个数a的相反数可以表示为-a。 根据相反数的意义,只改变原数的符号即可得到原数的相反数,就是说只要在一个数的前面加“-”号即可得到这个数的相反数。【注意】(1)数a表示任意一个数,可以是正数、负数和0,还可以表示任意的一个式子。 (2)一个数的前面加上“-”号表示这个数的相反数,加上“+”号表示这个数本身。四、相反数的求法求一个数的相反数,只要在它的前面添上“-”号即可得到原数的相反数;当原数是多个数的和差时,要用括号括起来再添“-”号;若原数是单个数且前面有“-”则也应先括起来再添“-”号,然后化简。如:(1)-a的相反数是-(-a),即a;(2)a+b的相反数是-(a+b);(3)-(-2)的相反数是-(-2),即-2.五、多重符号的化简当“-”号的个数为偶数时,化简结果为正;当“-”号个数为奇数时,化简结果为负。六、相反数的性质任何一个数都有相反数,而且只有一个。正数的相反数一定是负数;负数的相反数一定是正数;0的相反数仍是0。【注意】(1)若两个数互为相反数,则它们的和为0.(2)数轴上表示相反数的两个数关于原点对称.(3)相反数等于它本身的数只有0.(4)相反数是成对出现的,不能单独存在.(5)“只有符号不同的两个数”中的“只有”指的是除符号不同以外数字完全相同,不要理解为只要符号不同的两个数就是互为相反数.典型例题1、 判断下列说法是否正确。(1)-3与互为相反数。( ) (2)5的相反数是。( )(3)0的相反数是-0,所以0与-0不是互为相反数。( )2、下列叙述正确的是( )A.符号不同的两个数互为相反数 B.一个数的相反数一定是负数C.非负数的相反数是非整数 D.正数的相反数是分数3、如果a=-a,那么表示a的点在数轴上的位置是( )A.原点左侧 B.原点右侧 C.原点 D.原点或原点右侧4、一个数的相反数小于它本身,这个数是( )A.正数 B.负数 C.非正数 D.非负数5、一个数的相反数大于它本身,这个数是( )A.正数 B.负数 C.非正数 D.非负数6、一个数的相反数是非负数,则这个数一定是( )A.正数 B.负数 C.正数或0 D.负数或07、一个数的相反数是非正数,则这个数一定是( )A.正数 B.负数 C.正数或0 D.负数或08、下面两个数互为相反数的是( )A.与0.2 B.与-0.333 C.与-2.25 D.-(-5)与+(-5)9、-(+4)是( )的相反数;-(-7)是( )的相反数。10、a的相反数是( ),当a=13时,a的相反数是( ),当a=-5时,a的相反数是( ),当a=0时,a的相反数是( )。11、如果-a=-9,那么-a的相反数是( )。12、如果-x的相反数是-2,那么x=( );如果x-3的相反数是0,那么x=( )。13、求下列各数的相反数。,0,1,0.1,-a,-2xy,a-b,14、化简:(1) (2) (3)-+(-2) (4) (5)+-(-2)15、已知a-4与-1互为相反数,求a的值。16、已知x与y互为相反数,y与z互为相反数,已知z=2,求x、y的值。17、数轴上离原点的距离小于3.5的整数点的个数为m,距离原点等于3.5的点的个数为n,求m-n的值。1.2.4 绝对值知识点归纳一、 绝对值的概念数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|,读作“a的绝对值”。【注意】(1)一个数的绝对值就是在数轴上表示这个数的点与原点的距离,由于距离总是正数和零,所以一个数的绝对值是正数或零,即是一个非负数,这就是绝对值的一个重要性质非负性。(2)在数轴上,表示这个数的点离原点的距离越远,绝对值越大;反之离原点距离越近,绝对值越小。(3) 一个有理数是由符号和绝对值两个方面来确定的。二、绝对值的意义1、绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小。2、绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它本身的相反数,0的绝对值是0.三、绝对值的表示方法(重点)|=【注意】(1)非负数的绝对值等于他本身,即 (2)非正数的绝对值等于它本身的相反数,即四、绝对值得性质(重点、难点)1、绝对值具有非负性,任何一个数的绝对值总是正数或零,即:。2、0的绝对值是0,绝对值等于0的数是0,绝对值最小的数是0,即:。3、互为相反的两个数绝对值相等,即:。4、绝对值相等的两个数相等或互为相反数,即:或。5、绝对值等于同一个整数的数有两个,它们互为相反数,即:。6、若几个数的绝对值的和为0,则这几个数分别为0,即:。五、绝对值的求法1、在数轴上找到表示这个数a的点,这个点与原点的距离就是这个数a的绝对值。2、一个正数在数轴上对应的点与原点的距离恰好等于这个数本身,所以正数的绝对值是它本身。3、一个负数在数轴上对应的点与原点的距离是这个数的相反数,所以一个负数的绝对值是它本身的相反数。4、表示0的点就是原点,原点与原点的距离是0,所以|0|=0。【注意】在求一个数a的绝对值时要注意:先判断这个数a是正数、负数还是0,再根据绝对值的代数意义求出这个数的绝对值。六、利用绝对值比较两个负数的大小(重点)1、比较两个负整数的大小:根据绝对值大的数反而小2、比较两个负分数的大小时,有两点必须注意:绝对值大的数反而小;比较绝对值时,分母相同,分子大的数大;分子相同,分母大的数反而小,也可以将分数转化为小数进行比较。 3、利用绝对值比较两个负数大小的步骤:分别计算两个数的绝对值;比较绝对值的大小;判定两个数的大小(根据绝对值大的数反而小)。七、含有字母的绝对值的化简求值(重点、难点)化简绝对值要分两步走,即“先判后去”先判断这个数是正数、零还是负数,再由绝对值的意义确定去掉绝对值的符号的结果是等于它本身还是等于它本身的相反数或零。e.g:化简第一步:取0点:令,得;第二步:取范围:和或和;第三步:在各范围内化简:当时,当时,典型例题:1、-5的绝对值是( )A.5 B. C.-5 D.0.52、若且,则的值为( )A. B. C. D.不能确定3、数轴上的点A到原点的距离是6,则点A表示的数是( )A.6或-6 B.6 C.-6 D.3或-34、 下列各式错误的是( )A. B. C. D.5、若则的关系是( )A.相等 B.互为相反数 C.相等或互为相反数 D.以上均不正确6、下列说法中错误的个数是( )绝对值是它本身的数有两个,它们是0和1 一个有理数的绝对值必是正数2的相反数的绝对值是2 任何有理数的绝对值都不是负数A.0 B.1 C.2 D.37、在下列四个数中,比0小的数是( )A.0.5 B.-2 C.1 D.38、下列各式中正确的是( )A. B. C. D. 9、有理数在数轴上对应的点如图所示,则,的大小关系是( ) A. B. C. D. 10、满足的数有( ) A. 1个 B. 2个 C. 3个 D. 无数个11、已知,则的值为( ) A. B. C. D. 以上答案均不正确12、若,则为( )A. B. C. D. 13、设是最小的正整数,是最大负整数的相反数,是绝对值最小的有理数,则的大小关系是( )A. B. C. D. 14、下列推理: ,其中正确的个数为( )A. 1个 B. 2个 C. 3个 D. 4个15、为有理数,且,则的大小顺序是( )A. B. C. D.16、求下列各数的绝对值,并将所有数在数轴上表示出来。(1) (2) (3) (4)17、比较下列各组数的大小。(1)和 (2)和 (3)和 (4)和 18、计算:(1) (2) (3) (4) 19、把下列各式去掉绝对值的符号。(1) (2) 20、已知,求的值21、已知且,求的值1.3.1有理数的加法知识点归纳一、有理数加法的定义1、把两个有理数合成一个有理数的运算叫作有理数的加法。2、两个有理数相加,有以下几种情况:(1)两数都是正数;(2)两数都是负数;(3)两数异号,即一个是正数,一个是负数;(4)一个是正数,一个是0;(5)一个是负数,一个是0;(6)两个数都是0.二、有理数的加法法则1、有理数的加法法则共有4条:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;(3)互为相反的两个数相加得0;(4)一个数与0相加,仍得这个数。2、用字母表示加法法则:(1)同号两数相加若则;若则;(2)异号两数相加,绝对值不相等时,若且则若且则(3)互为相反的两个数相加:若且则(4) 一个数与0相加:【注意】理解与运用有理数的加法法则应该注意以下几点:(1)符号相同的两个数相加的算法,实际上有两种:两个正数相加或两个负数相加。两个数相加后得一个数,符号不变,绝对值相加,实际上说明了这类题的算法。(2)绝对值不相等的异号两数相加时,最后结果是由大的绝对值减去小的绝对值和较大的加数的符号两部分组成,千万不要两个绝对值相加。(3)互为相反的两个数相加时,也可以用绝对值不相等的异号两数相加的法则进行计算。(4)任何数同0相加仍得任何数,在小学就接触过,不同的是中学还接触到负数与0相加,仍得这个负数。(5)计算时不能只计算绝对值,忘记确定符号。计算时要牢记步骤,不管是同号还是异号两数相加,一定要先确定符号,再计算绝对值。(6)不要将“同号两数相加”和“异号两数相加”的法则弄混,要熟练掌握法则,准确计算绝对值的加减。(7)不能认为和一定大于加数:受小学加法的影响,认为和一定大于每个加数,这是错误的。要打破小学学习中的思维定式。三、有理数加法的运算步骤进行有理数加法运算时,应按以下“一判二定三加减”的步骤:(1)判断类型,根据类型确定用哪一个法则;(2)根据加数的绝对值的大小及加数的符号确定和的符号;(3) 对绝对值进行加减运算确定数值。四、有理数加法的运算律有理数加法运算律加法交换律文字语言两个数相加,交换加数的位置,和不变。符号语言加法结合律文字语言三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。符号语言五、有理数加法运算律运算技巧利用有理数的加法运算律,可以使计算简捷,实际运算常采用下列技巧:(1)互为相反的两个数可以先相加; (2)几个数的和为0可先相加;(3)几个数相加可得整数的可先相加; (4)同分母的分数可先相加;(5)异号且绝对值相近的两数可先相加; (6)符号相同的数可先相加。1.3.2有理数的减法知识点归纳一、 一、有理数减法的意义1、 有理数的减法,就是已知两个有理数的和与其中的一个加数,求另一个加数的运算。2、 有理数的减法与加法互为逆运算。3、 任意两个数都可以进行减法运算。4、 几个有理数相减,差仍为有理数,差由两部分构成:(1)性质符号;(2)数字即数的绝对值。二、有理数的减法法则内容:减去一个数,等于加上这个数的相反数,即。这里的表示任意有理数。这样一来,就把有理数的减法运算转化为加法运算了,具体步骤是:(1) 将减号变成加号,把减数的相反数变成加数;(2) 按照加法运算的步骤去做。【注意】(1) 有理数的减法是有理数加法的逆运算,做减法时常用转化的思想,把减法转化成加法计算;(2) 进行减法运算时,首先应弄清减数的符号)(是“+”还是“-”);(3) 将有理数减法转化为加法时,要同时改变两个符号:一个是把运算符号“-”变为“+”;另一个是改变减数的性质符号,变成它的相反数,如:(-5)-(+3)=(-5)+(-3)=-8(-5)-(-3)=(-5)+(+3)=-2三、有理数的加减混合运算对有理数的加减混合运算应作如下理解:(1)因为减法可以转化为加法运算,于是加减混合运算可以统一为加法运算,用式子表示为:这称为几个数的代数和。(2)代数和中,加号和括号可以省略。【特别提示】只有把加减法统一成加法后,才能写成代数和,正数要带着性质符号(当正数在式子的第一项时可以省略)。四、有理数加减混合运算的方法和步骤1、运用有理数的减法法则将有理数混合运算中的减法转化为加法;2、写成省略加号和括号的形式;3、运用加法法则、加法交换律、加法结合律简化运算。【注意】(1)简化和的形式后,要注意“+”“-”的理解和使用.既可看作运算符号,也可看作数的性质符号.(2)运用加法运算律时,第一。交换加数位置时,要连同它的性质符号一起交换位置,千万不要把符号漏掉;第二,在应用结合律时,应突出凑整、同分母、同号的特点。五、运用作差法比较两个有理数的大小运用有理数的减法运算律可以比较两个有理数的大小,这就是“作差法”。要比较两个有理数与的大小,可先求出与的差。(1)当时,;(2)当时,;(3)当时,.以上结论,反过来也成立。1.4.1有理数的乘法知识点归纳一、有理数的乘法法则1、异号两数相乘得负数,并把绝对值相乘.2、任何数与0相乘,都得0.3、同号两数相乘得正数,并把绝对值相乘。【注意】(1)有理数的乘法法则可以简述为:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数与0相乘,都得0.(2)不为0的两数相乘,先确定符号,再把绝对值相乘.(3)当因数中有负号时,必须用括号括起来.(4)数字与字母、字母与字母、数字与括号之间相乘时可省略乘号.(5)有理数的乘法实质是通过符号法则,将有理数的乘法转化为小学算术乘法来完成.二、有理数乘法的运算律有理数乘法运算律乘法交换律文字语言两个数相乘,交换因数的位置,积不变。符号语言乘法结合律文字语言三个数相乘,先把前两个因数相乘,然后把结果与第三个数相乘;或者先把后两个数相乘,再把第一个数与所得的结果相乘,积不变。符号语言乘法分配律文字语言一个数与来那个个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加。符号语言【注意事项】(1)乘法交换律和乘法结合律,是指因数的位置交换和因数的结合,它们都包含性质符号.(2)用乘法分配律时,要平均分配,不能漏乘,且要注意符号法则的应用.(3)进行乘法运算时,一定要把小数转化为分数,带分数转化为假分数,能约分的要先约分。(4)乘法运算律可推广为:三个以上的有理数相乘,可以任意交换因数的位置,或者把其中的几个因数相乘.如:一个数同几个数的和相乘,等于把这个数分别同这几个数相乘,再把积相加。 (5)利用乘法分配律去掉括号时要注意以下两个方面:A.括号外面是正数时,去掉括号后式子各项的符号与原括号内式子相应各项的符号相同; B.括号外面的因数是负数时,去掉括号后式子各项的符号与原括号内式子相应各项的符号相反,另外还要特别注意再去括号时,不要漏项。三、有理数乘法法则的推广1、几个不等于0的数相乘,积的符号由负因数的个数决定。当负因数有奇数个时,积为负;当负因数的个数有偶数个时,积为正。2、几个数相乘,如果有一个因数为0,那么积就等于0.【注意事项】(1)在有理数的乘法中,每一个乘数都叫做一个因数;(2)几个不等于0的有理数相乘,先根据负因数的个数确定符号,然后把绝对值相乘;(3)几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么至少有一个因数为0.四、两个有理数的乘法步骤1、确定积的符号,根据同号得正,异号得负这一结论。2、把绝对值相乘,这与小学里的乘法一致。五、几个非零有理数的乘法步骤1、先确定积的符号,积的符号由负因数的个数决定.当负因数由奇数个时,积为负;当负因数的个数由偶数个时,积为正。2、再把绝对值相乘。注:进行有理数的乘法运算时,一般来说,把小数化成分数,把带分数化成假分数进行计算时简单些。1.4.2有理数的除法知识点归纳一、倒数的意义:乘积是1的两个数互为倒数【注意事项】(1)“互为倒数”的两个数是相互依存的;(2)0和任何数相乘都等于0而不是1,因此0没有倒数;(3)的倒数是;(4)倒数的结果必须化成最简形式,使分母中不含小数和分数;(5)互为倒数的两个数必定同号(同为正数或同为负数)。二、倒数的求法1、求一个数的倒数,可以直接写成这个数的几分之一,即的倒数是2、求一个分数的倒数,只要将分子、分母交换一下位置即可,即的倒数是3、求一个带分数的倒数,应先将带分数化成假分数再求其倒数4、求一个小数的倒数,先将小数化成分数,然后再求倒数5、求一个数的负倒数,先求这个数的倒数,再求倒数的相反数即可。(乘积为-1的两个数互为负倒数)三、有理数的除法法则1、除以一个不等于0的数,等于乘这个数的倒数 2、两数相除,同号得正,异号得负,并把绝对值相除 3、0除以任何一个不等于0的数,都得0有理数的除法公式【注意事项】(1)一般在不能整除的情况下,应用第一个法则,在能整除的情况下应用第二个法则(2)因为找不到一个与0相乘结果不为0,所以0不能当除数(3)第二个法则与有理数的乘法法则相似,两数相除时先确定商的符号,再确定商的绝对值。四、有理数的乘除混合运算有理数的乘除混合运算通常先统一为乘法,变成多个有理数相乘。1、因为乘法与除法是同一级运算,应按从左到右的顺序运算2、结果的符号由算式中负数的个数决定,负数的个数为偶数个时结果为正;负数的个数是奇数个时结果为负3、化成后,应先约分再相乘五、有理数的加减乘除混合运算有理数的四则混合运算,应遵循有括号先算括号(一般先算小括号,再算中括号,最后算大括号)里面的运算,无括号则应按“先乘除,后加减”的顺序计算。知识点归纳一、乘方的概念定义:求n个相同因数的积的运算,叫作乘方,即,记作,读作的n次方。【注意】其实乘方运算是求若干相同因数的积的一种简便运算,这里要注意因数一定要相同。二、幂的概念定义:乘方的结果叫作幂。【注意事项】(1)乘方与幂不同,乘方是一种运算,幂是乘方运算的一种结果,乘方与幂的关系,就如同乘法与积的关系一样;(2)只有乘方才有幂,不能单独出现一个数就叫幂。三、指数、底数的概念定义:相同因数的个数叫指数,相同因数叫底数。如在n中,叫底数,n叫指数。注意:底数一定是相同的因数四、乘方运算法则正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。【注意事项】(1)有时一个数也可看作它本身的一次方(2)有理数的乘方是有理数乘法的简便运算,因此有理数乘方的符号源于有理数乘法的符号法则。五、有理数的混合运算1、运算顺序:(1)先算乘方,再算乘除,最后算加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号。大括号依次进行。(4)通常把六种基本运算分为三级:加减是第一级运算,乘除是第二级运算,乘方和开方是第三级运算。(5)运算顺序的规定是先做高级运算,再做低级运,同级运算是指加与减(或乘与除)在一起的运算。【注意事项】(1)在计算时,应强化顺序意识,但该简便运算时还应简便运算;(2)要活用运算顺序,不能一味强调顺序计算。如:同级运算,按从左到右的顺序进行;将加减法统一成加法,乘除运算统一成乘法后就不可按这个顺序进行,各根据需要运用交换律、结合律灵活选择运算顺序;对于有括号的,则先做括号内的运算,可以用分配律时就可以先去括号而不是先算括号里的等;(3)应注意数的性质符号的变化,不能出错。六、-1的n次方-1的奇次幂为-1,-1的偶次幂为1,用式子表示为(-1)2n =1,(-1)2n+1 =-1.(n为正整数)【推广】用字母表示有理数,为正整数,则有:(1)当时,;(2)当时,;(3)当.1.5.2科学计数法知识点归纳一、绝对值大于10的数的科学计数法1、科学计数法:把一个绝对值大于10的数写成的形式(其中是整数位只有一位的数,是正整数),这种计数的方法就是科学计数法。2、用科学计数法计数时应注意:(1)不能改变数的大小;(2)表示成的形式;(3);(4)负数也可以用科学计数法表示,“-”照写,其他与正数一样。3、一个数写成的形式时,的整数位只有一位,否则错误。4、把一个数写成的形式时,若这个数是大于10的数,则比这个数的整数位少1.二、把科学计数法形式的数转化为原数1,、根据10的指数来确定,是几,就把小数点向右移动几位。2、把科学计数法表示的数中的指数加上1,就得到了原数的整数位。【注意事项】(1)当把科学计数法形式的数转化成原数时,可在以上方法中任选一种,便可解决问题。(2)化繁为简的思想方法:用科学计数法表示数,易读、易写、易记,不易出错,减少阅读书写和记忆的麻烦,这渗透了化繁为简的思想。1.5.3近似数知识点归纳一、准确数和近似数1、准确数往往是生活中可以用自然数表示的人数或物体的个数等。2、在实际问题中有的量不可能或者没有必要用准确数表示,而用有理数近似地表示出来,这个数就是这个量的近似数(或近似值)。注:一般地,表示测量出来的数,通常是近似数。二、有效数字一个近似数,从左边第一个不是0的数字起,到末尾数字为止,所有的数字都叫做这个数的有效数字。【提示】1、有效数字的确定,要注意以下几点:(1)从左边第一个非零数字起,为第一个有效数字;(2)到精确的数位上,后面的数字按四舍五入处理;(3)有效数字包括重复数字和0、2、对于同一个数字取近似值时,有效数字个数越多,精确度越高。3、特别地,用科学计数法表示的近似数,规定它的有效数字是中的有效数字。4、还可根据保留几位有效数字取近似数。三、近似数精确度的表示近似数和准确数的接近程度可以用精确度表示,一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确度是精确程度。精确度有两种形式:一是精确到哪一位,二是保留几个有效数字。四、近似数和有效数字的确定方法1、对一般数字的近似数有两个原则:一是非零数字都是有效数字;二是前面的“0”都不是有效数字,夹在非零数字中间的“0”和后面的“0”都是有效数字。2、对用科学计数法表示的数:由中的的确定,的有效数字就是这个近似数的有效数字,与无关。3、对带有计数单位的近似数,方法同上,如1.2万,同有两个有效数字1、2,而不是5个有效数字1、2、0、0、0。【注意事项】(1)有些近似数大小是相同的,但精确度和有效数字不同。(2)有些近似数表现形式不同,但数值大小、精确程度和有效数字是相同的。
展开阅读全文